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Abstract

We propose Neighbor Offset Extrapolation, a hardware prefetching technique which aims to reduce
memory latency in static graph workloads using the Compressed Sparse Row (CSR) memory layout by
improving the spatial locality between nodes’ IDs and neighbor lists. We extend this concept to SNOE, a
software implementation which greatly improves the spatial locality of the neighbor lists with no prefetch-
ing. We also propose Merged CSR, an alternative memory layout which aims to obtain the same latency
saving properties without the sorting requirements NOE has, while requiring little or no additional space
over the existing CSR layout. We evaluate both techniques using the GAP benchmark suite with graphs on
the order of 1,000,000 nodes. We find that Neighbor Offset Extrapolation is able to calculate the address
of a node’s neighbor list ahead of time with 100% accuracy in our graphs using less than 18K of metadata
cache space. Using the Linux perf tool, we discover SNOE achieves a 20% speedup on average across
our benchmarks versus CSR. We also find that Merged CSR obtains a 72% speedup in the triangle count-
ing benchmark because of its traversal-heavy main loop. Other benchmarks also see gains: we see a 13%
speedup in single-source shortest path and a 5% speedup in breadth-first search. Other benchmarks whose
main loop iterates through nodes in memory order see performance losses with Merged CSR, but believe
the introduction of an aggressive next-line prefetcher can work in tandem with Merged CSR to obtain even
greater performance gains in these cases.

1 Introduction
Static graph workloads typically exhibit poor performance because of their pointer chasing behavior and
poor spatial locality. Previous research has shown results for hardware prefetchers which specifically target
graphs. Most of this work has focused on pointer fetching prefetchers that scour loaded cache lines for
values which look like memory addresses, and issue prefetches for that memory. Unfortunately, pointer
fetching prefetchers often issue many useless prefetches, because the software may not actually dereference
every pointer in the cache line. In addition, the pointer chasing properties of graphs make even successful
prefetches from pointer fetching schemes save little execution time.

Furthermore, the memory path taken in a graph workload changes based on the algorithm’s inputs even
within a single graph. Consider the find() operation in a Binary Search Tree shown in Figure 1 as an
example. The path taken in the graph by find(10) (left) and find(30) (right) are completely different,
and due to the poor spatial locality, extrememly challenging to predict ahead of time. These limitations place



Figure 1: The traversals of two find() operations in a binary search tree. This demonstrates how the access
pattern differs among different inputs, even if the graph is fixed.

significant restrictions on our ability to prefetch ahead of the pointer chasing in graphs. Our solutions in this
paper achieve performance gains by reducing these restrictions through improving spatial locality.

We introduce two solutions for static graph workloads, which achieve performance gains by improving
the spatial locality between a node’s ID and the location of its neighbor list. The first of these techniques,
Neighbor Offset Extrapolation, exploits ordering properties in a graph’s structure that allow us to accurately
calculate the address of each node’s neighbor list, or list of nodes which are connected by an edge from our
node, in a graph sorted in degree-order, without needing to load its address from memory first. NOE takes
advantage of this information by issuing prefetches for the next neighbor list ahead of time. We also demon-
strate SNOE, a software implementation of NOE which improves the spatial locality in finding neighbor lists
in the same manner, and achieves significant performance improvements even with no prefetcher available.
We also develop an alternative memory layout for graphs called Merged CSR, which organizes the graph’s
structural information in a way that allows us to eliminate the same cache misses NOE saves entirely in a
software solution, without requiring any custom hardware or needing to sort the graph.

We evaluate the NOE using the GAP benchmark suite [1], on graphs on the order of 1 million nodes and
4 billion edges. By simulating the metadata caching process, we show that NOE can calculate the correct
address of every node’s neighbor list by storing less than 18K of metadata in the cache. This demonstrates
that NOE is a practical to implement on hardware. In the future, we would like to implement NOE in a
hardware simulator to obtain data on its timeliness and explore methods to reduce its over-fetch rate. Using
the GAP benchmark suite [1] and the Linux perf tool on the same set of graphs, we find that SNOE achieves
a 20% average speedup across our benchmarks. We also find that Merged CSR achieves a 73% speedup in the
triangle counting benchmark, as well as a 13% speedup in single-source shortest path, and a 5% speedup in
breadth-first search. Three of our benchmarks see performance losses, however, and analysis of the memory
latency by function shows that Merged CSR performs particularly poorly on the benchmarks because their
main loop iterates through a graph’s nodes in memory order. We believe that the introduction of a basic
prefetcher will alleviate this performance issue.

Both of these solutions rely on the insight that locating the list of a node’s neighbors is much easier than
guessing which neighbor nodes will be visted, and in what order. Because the neighbor lists in CSR’s second
array exhibit good spacial locality relative to the node IDs, NOE is able to calculate the address of a node’s
neighbor list given only its ID to issue accurate prefetches, without depending on the challenging-to-predict
load to fetch the list’s address that is required with no prefetching. Merged CSR achieves reliable locality in
the neighbor lists by instead fusing the two CSR arrays and reassigning the nodes’ IDs in a way that allows
the software to know the location of a node’s neighbor list without performing a separate load first.
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This paper’s primary contribution is the advancement of existing solutions for the longstanding problem
of memory latency reduction in static graph workloads through the introduction of two new techniques to
improve spatial locality in graphs. We demonstrate the feasibility of the Neighbor Offset Extrapolation,
and in the future we would like to run experiments on the prefetcher to gather data on its performance and
analyze the timeliness of its prefetches. We also introduce SNOE, software implementation of NOE, which
we demonstrate achieves a 20% average speedup across our benchmarks in large, dense graphs. Finally, this
paper also brings forth a significant strategy shift in optimizing graph applications. That is, we demonstrate
the concept of using software solutions to improve spatial locality in graphs without the aid of prefetching.

Our work poses many interesting questions and insights we did not have time to explore. Firstly, how
does the performance of the NOE hardware prefetcher compare to that of SNOE? Our data shows that even
with the improved spatial locality, the NOE post cache still contributes to 21% of the memory latency in our
benchmarks because of frequent cache evictions. We suspect the NOE prefetcher could improve performance
even further, since its metadata is stored in a dedicated cache and is never evicted. Secondly, we are interested
in exploring different methods for handling very high-degree nodes, whose neighbor lists are too long to
efficiently prefetch all at once. We suppose that placing a limit on the number of cachelines to prefetch
initially and then loading the remainder dynamically using a next-line prefetcher may be a suitable solution.
Thirdly, how does Merged CSR improve with the introduction of a prefetcher? Our results suggest that
Merged CSR performs particularly poorly in benchmarks whose main loop traverses the graph’s nodes in
memory order. With the introduction of a basic next-line or stream [9] prefetcher we expect to be able to
mitigate this issue. Finally, we would also like to explore the interaction between hardware and software
solutions more generally, and explore the possibility for the two to work together to achieve even greater
performance gains.

2 Background
We now describe in detail how the CSR memory layout is used for static graphs, and how we can make use
of locality of the neighbor lists relative to the nodes to optimize their memory performance.

Compressed Sparse Row (CSR) is a sparse matrix structure used for many applications outside graph
workloads, but in this paper we will focus on its use for graphs. CSR stores a graph’s structure using two
arrays. The first array has length equal to the number of nodes in the graph. Each node N is given an ID,
IN , from 0 to the node count - 1. To indicate which nodes can be reached via an edge from N, CSR stores a
pointer in its first array at index IN , referencing a particular index, say JN , in its second array. Beginning at
index JN , the second array stores a sequence of node IDs which are connected by an edge from node N, also
known as the neighbor list. To know the length of this list, we can simply take the difference between the
IN th and IN+1st values in the first array, since the IN+1st value represents the start of the neighbor list for the
N +1st node. Thus, the second array, with all its separate neighbor lists put together, has length equal to the
number of edges in the graph. Figure 2 shows a graph data structure, along with its CSR equivalent.

A common step in graph applications is an edge traversal; that is, reading a node’s neighbor list to find
out which nodes can be immediately reached from that node, and then performing some computation on the
neighboring nodes. Importantly, it takes two memory accesses to find the neighbors of a node, given its ID
IN . First, we have to load the address JN of that node’s neighbor list from the first CSR array at index IN , and
then load the N’s neighbor list from the second array at index JN . These memory accesses are an example of
dependent loads, because they cannot be parallelized by our architecture’s memory controller. This is because
we need to load the value JN from the first array before we even know what address to load in the second array.
Because the second load’s address depends on data obtained in the first load, any memory latency incurred
by the first loads will delay the second load as well. Performing several edge traversals in a row across
several nodes creates long chains of dependent loads, also known as pointer chasing. Because dependent
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Figure 2: Example of a graph data structure (upper right), and its CSR memory layout equivalent. The
numbers inside each node in the graph structure represent the node’s ID in CSR.

loads must occur sequentially and cannot be parallelized by hardware, these chains are particularly harmful
to performance, since a cache miss anywhere in the chain can stall the entire chain until its data returns.

However, CSR does allow some loads to be parallelized. Once we obtain the ID of a node, we can load
the address of that node’s neighbor list by indexing into CSR’s first array using the node ID. However, graph
workloads also store internal node data, such as the node values in a binary search tree, potential values in
A* [18], or usernames in the graph of social media followers. This internal data is typically stored in arrays
indexed by the node ID, so if we need to access this data in order to know which edge to traverse next, loading
this data typically does not hinder performance even on a cache miss, since its load can be parallelized with
the load for the neighbor list address in CSR’s first array.

At several points in this paper, we will utilize an abstraction of DRAM latency cycles, or time units equal
to the average amount of time required for a value to be loaded from main memory after a cache miss. For
example, we say a chain of five dependent loads which all miss in the cache takes five DRAM latency cycles
to complete, because every one of the loads must wait that length of time for its value to return before the next
load can be issued. For simplicity, under this abstraction we assume all cache hits suffer no latency regardless
of which level of cache the hit occured in, and that all computation operating on data which hits in the cache
occurs instantaneously. For these reasons, this abstraction will not be too honest as far as analyzing prefetch
timeliness in practice, but it will be extremely useful for reasoning about optimizing dependent loads. As we
will see in section 4, the abstraction shows us that prefetching ahead of the pointer chasing is much more
feasible in the second CSR array than in the first.

As we discussed in section 1, most previous prefetching work in graph workloads has focused on pointer
fetching; that is, scouring memory loaded into the cache and issuing prefetches for values in the cache line
which look like memory addresses. However, as we discuss in more detail in section 3, each of these methods
fall short for two critical reasons:

1. The nodes in graphs tend to exhibit poor spatial locality, meaning nodes close together in memory do
not tend to be close in the data structure, and vice versa.

2. Many graph workloads’ traversals are dependent on data stored in the nodes, creating timeliness prob-
lems because the correct neighbor cannot be decided until the node is loaded.

The two techniques we discuss in this paper, Neighbor Offset Extrapolation (NOE) and Merged CSR,
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each address both of these issues. NOE achieves this by taking advantage of the ordering properties in CSR’s
second array to achieve accurate predictions of the address of a node’s neighbor given only its ID. On the
other hand, Merged CSR sidesteps this locality issue entirely by rearranging memory so that neighbors can
occupy a cache line which can be efficiently loaded knowing only the node’s ID. We present a time-space
tradeoff among several methods of loading internal node data which have varying applications depending on
how each graph algorithm utilizes the data.

3 Related Work
Several previous publications have addressed graph memory latency, mostly focusing on hardware prefetch-
ers. The first graph-specific prefetcher was the Irregular Memory Prefetcher [2], which took advantage of
the fact that in most irregular memory access patterns based off the form A[B[i]], including CSR, the inner-
most access will exhibit good spatial locality because the i’s will occur in a loop. IMP leverages this by
caching sectors of B it needed to read anyway, and use them to predict future accesses to A[B[i]]. In a graph,
A would be the second CSR array containing the neighbors, and B would be first CSR array containing the
each node’s neighbor index. Accordingly, a successful prefetch on A[B[i]] would be able to traverse from one
node’s neighbor list to the next node’s neighbor list in a single DRAM latency cycle, not two, as is needed
with no prefetching. The paper also proposed utilizing partial cache lines to save cache space, because in
nearly all cases only one or a few values were needed from each value fetched. Unfortunately, this scheme is
limited in scope, as the poor spatial locality in graphs caused the hit rate in the second CSR array to be low.

Three later papers improved on this concept, the first proposing the Programmable Prefetcher [3], which
utilizes small CPUs to run simple code segments provided by the software to prefetch irregular access pat-
terns. The second paper [4] included some excellent profiling work charactering the memory latency bot-
tlenecks in graph workloads. The authors observed that load-load dependencies are the main performance
hindrance, and the first load of these chains, which they call the producer load, is almost always a load on
the neighbor lists in the second CSR array, which they call a structural load. Using their observations, they
proposed DROPLET, a prefetcher which includes a data-aware streamer which aims to reduce overfetching
versus a conventional pointer-fetching prefetcher, by marking with a flag bit which memory corresponds to
graph structure data. Furthermore, the Record-and-Replay (RnR) prefetcher [5] stores sequences of irregular
memory offsets, and uses software assistance to know when to replay the irregular streams, and at what base
address.

4 Motivation
We motivate the techniques used in NOE and Merged CSR by analyzing why previous graph prefetching
schemes have not performed as well on graphs as they have on other irregular data structures.

As mentioned in section 3, IMP [2] is limited in its coverage possiblity, because only nodes that are
neighbors of previously accessed nodes have a chance to be prefetched, and the DROPLET [4] authors show
the neighbor lists exhibit longer reuse distances than the nodes’ internal data or the pointers to neighbors.
This is especially problematic if a newer cache eviction policy is used for the neighbor cache line buffer, such
as RRIP [6], SHiP [7], or Hawkeye [8], which all decide what to evict based on expected time to future access.
These cache schemes all elect to keep data they predict will be accessed sooner, and accurate performace of
these schemes would lead to few successful prefetches using old cached neighbor lists. In addition, because
of graphs’ poor spatial locality, IMP cannot reliably obtain performance improvements by caching memory-
sequential neighbor lists, because it cannot make any guarantees the two nodes are near each other in terms
of access time.
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The scope of both the Programmable Prefetcher [3] and DROPLET [4] are limited because of the data
dependencies in most graph algorithms. Although the Programmable Prefetcher allows user-supplied code to
predict prefetches, it does not provide much of a time save for prefetching neighbors, because most workloads
rely on internal data to decide which neighbor to take, which is not possible to predict at the time the code
is submitted. Similarly, DROPLET [4], although it is able to filter out some non-structural data from its
pointer prefetches, there is a fundamental lower bound on the over-fetch rate that can be achieved, because
the data that determines which neighbor will be taken arrives one DRAM latency cycle later than the one the
prefetches must be issued to save time.

RnR [5] also suffers from this issue. Although it performs better than IMP [2], Programmable Prefetcher
[3], or DROPLET [4] on graphs, RnR’s [5] performance on graphs falls significantly short of its excellent
gains it achieves on matrix applications. This is because matrices tend to not suffer from spatial locality issues
or data dependencies. In the typical row-major format used by all major low-level programming languages,
values next to each other in a row within a matrix data structure will be in consecutive memory locations,
and values next to each other in a column will be the same stride apart in memory, and that stride is known
at load-time. For this reason, an operation like matrix multiplication can be optimized using a general stride
prefetcher, like the Best-Offset Hardware Prefetcher [10]. Of course, RnR [5] can help immensely with more
irregular matrix operations like Principal Component Analysis and Gaussian Elimination, which involve more
irregular access patterns than a linear stream.

Importantly though, these irregular access patterns are highly repeatable among similarly-sizsed matrices,
as the access patterns generally do not depend on the input data. Consider standard matrix multiplication as
an example. Calculating the value which ends up in the upper-leftmost cell of the answer always involves
streaming through the first row of the first argument and the first column of the second argument, regardless
of what actual values appear there. Contrast this with the graph search algorithm A* [18], where, at any step,
the next neighbor to traverse to and, therefore, the next memory to be loaded, depend on how a potential
value stored with a node compares to that of the target node. Therefore, streams that RnR records will not be
reliably replayable because the traversal is dynamically decided based on input parameters (in the case of A*
[18], the potential value of the target node).

Even worse, these internal data dependencies seem to be a fundamental feature of graph algorithms.
Consider the find() operation on a Binary-Search Tree formatted as a CSR graph. Just like A* [18], this
operation decides to traverse to the left or right child based on a comparison between an internal node value
and a hyperparameter value that is decided for each run and cannot be known at the time an RnR stream is
recorded. Imagine if instead BST find did not involve this data dependency. The only other option would
be that the traversal was identical for all find() calls on that particular tree. However, that would certainly
mean we would always arrive at the same node every time, and we would not need to do the traversal in the
first place! This nonsense operation is analagous to reading every element in a matrix just to find out what
the lower-rightmost element is. Graph algorithms must exhibit these data dependencies to do useful work
because they express their decisions in their paths through a static data structure rather than in the values
written to an entirely new data structure. These highly irregular access patterns are also the primary reason
past prefetching work in generalized server workloads targeting linear and strided streams [9] [10] or memory
history [11] [12] [13] [14] [15] [16] [17] has seen poor performance in graph applications.

These issues highlight how we need to change our strategy with regards to determining future memory
accesses. That is, instead of aggressively fetching pointers in the cache lines we load, we need to be able
to make use of locality properties in graphs in order issue to reach data ahead of the pointer chasing, before
we see a concrete pointer to the data. Although we have established that the nodes within a CSR graph tend
to exhibit poor spacial locality, we can take advantage of how the neighbor lists are stored. A single node’s
neighbors are always stored in a contiguous region of memory, and the lists are always stored in the same
order in the second CSR array as the nodes are in the first array. As we will see in section 4.1, these properties
provide us a critical opportunity to accurately run one DRAM latency cycle ahead of the pointer chasing.
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4.1 What does CSR make easy (or hard) to prefetch?
Poor spatial locality of nodes does create barriers to prefetching graphs by running ahead of the pointer
chasing. The largest barrier is the difficulty of determining the the next node in the traversal. To issue timely
prefetches that save a DRAM latency cycle in this manner, we must request the prefetch at the time we know
the current node’s ID and the address of its neighbor list, but not the IDs of the neighbors themselves. To
determinte if this is possible, observe that in order to prefetch the next node, we need to know two pieces of
information:

1. Which neighbor(s) will be fetched from the current node?

2. What is the ID of each of the neighbor nodes that will be fetched?

The Programmable Prefetcher [3] has demonstrated the ability to solve requirement 1 above by introduc-
ing a hardware-software interface that allows small code snippets to run on dedicated CPUs whose respon-
sibility is to predict what neighbors to prefetch. Additionally, this technique could be expanded to process
traversals with data dependencies as well, as the internal data belonging to the current node is available at
the time we issue the prefetch. However, requirement 2 is much more problematic. Even if a scheme like the
Programmable Prefetcher [3] were able to choose which neighbors will be accessed, it could only reasonably
predict the indices of the neighbor list will be chosen, not the actual ID of the neighbor. Because of the
poor spacial locality in graphs’ nodes, predicting the ID of any of the chosen neighbors before receiving the
current node’s neighbor list from main memory seems very unlikely. This issue is the primary reason we do
not consider running ahead of the pointer chasing by prefetching in the first CSR array to be feasible.

However, there is a different load we could attempt to optimize instead: the one going from a node
neighbor pointer in CSR’s first array to the actual neighbor list in the second array. To save a DRAM latency
cycle in this case, we need to issue a prefetch for a node’s neighbor list when we have just received the
previous node’s neighbor list from DRAM. This means we know the ID of the node whose neighbor list we
need to fetch, but nothing else about it.

Even with this limited amount of information, we have a few advantages over prefetching in the first
array:

1. For a graph traversal, even if we won’t know what neighbor to visit next in a timely manner, we at least
know we will need to load the neighbor list, and do not have to perform any dynamic calculation to
determine what to prefetch, provided we can determine the address in a timely manner.

2. The location of the neighbor lists exhibit good spatial locality relative to the node IDs.

In other words, we almost always need the neighbor list after visiting a node, and CSR’s second array
always stores the neighbor lists in the same order the nodes are stored in the first array. Therefore, we should
develop a technique which allows us to calculate the address of a node’s neighbor list knowing only the node’s
ID. If we could achieve this, it would in fact save a DRAM latency cycle because we could issue a prefetch
a node’s neighbor list at the time we learn its ID from the previous node’s neighbor list and receive it at the
same time we receive the node neighbor pointer and internal data.

In this paper we introduce two techniques for eliminating this cache miss: Neighbor Offset Extrapolation
and Merged CSR.

5 Neighbor Offset Extrapolation
Here, we introduce the high-level concepts for the Neighbor Offset Extrapolation (NOE) prefetcher. NOE is
a hardware prefetching technique which fetches ahead of pointer chasing by taking advantage of additional
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spacial locality properties we can achieve by sorting the graph’s nodes in order by degree in order to calculate
the location of a node’s neighbor list knowing only the node’s ID.

By making use of cache space to store metadata, NOE preprocesses the sorted graph and records every
location the node degree changes, storing which node ID the change occurred on and what the actual degree
of the nodes in that region are. We call each of these records a post, since it acts mildly like a signpost, letting
the hardware know that the next nodes have a stated degree until another post tells it otherwise. We find in
our evaluations, using graphs on the order of 1 million nodes and 4 billion edges, that a sorted graph can store
all the posts using less than 18K of cache space. For a sense of scale, the L1 cache on a typical desktop CPU
has a size of 16K per physical core. Given that [4] showed that the L2 cache is very poorly utilized in graph
workloads, we expect this amount of metadata to cause few cache capacity issues.

Sorting the graph is necessary to eliminate a critical source of uncertainty in the locations of the neighbor
lists we are prefetching. In the second CSR array, the staring index of the neighbors of a node is equal to
the sum of the degrees of all the nodes coming before it in memory. Because the degrees of the nodes in
an unsorted graph appear random, it is not possible to accurately calculate the offset for a given node in the
unsorted graph, since the offset depends on the degrees of all the nodes coming before it. By sorting the
graph in order by degree, we can get around this restriction, because the sorting the graph by degree produces
sections of the graph where all nodes have the same degree. Because most practical graphs have the property
that the vast majority of nodes have low degree, we will end up with long sequences of nodes that have no
uncertainty in the start index of their neighbors, provided we record the region’s starting node and the degree.
Specifically, if we record that our sorted graph has a region of L nodes which all have degree D, beginning
at starting node S that has neighbor start index OS, we know the neighbor start index ON of any node with
ID N such that S ≤ N < N +L to be ON = OS +D(N −S). Luckily, we find in experimental testing that the
additional time required to sort the graph during preprocessing only increases the build time of our graphs
by about 15-20%. Based on our results for NOE, this trade-off is entirely worth it for workloads running any
more than a few rounds of a graph algorithm.

Knowing the actual degree of the node we are prefetching also gives an additional advantage: by knowing
the degree of the nodes in each region along with the exact address at which our target node’s neighbor list
lies, we can exactly calculate the proper lookahead to with which to prefetch. We use the term lookahead
to refer to the number of consecutive cache lines to fetch in order to ensure we load the entire neighbor list
of the node we are loading 1. This ensures we are always able to load the entire neighbor list regardless of
its length, meaning we will not suffer additional cache misses resulting from not loading enough memory to
store all the neighbors. We also avoid the opposite problem; that is, issuing useless prefetches for memory
belonging to neighbors of nodes coming after us.

We experimentally calculated the cache size necessary to store all the necessary posts. Figure 4 shows
our results. We find that on average, a cache size between 17 and 18 kilobytes was necessary to store all
the necessary posts, including both the neighbor list location and the node degree. Comparing this to a few
graphs with orders of magnitude fewer nodes than the ones shown, we also find that the cache size does
not scale linearly with the number of nodes in the graph. This makes sense, because the number of degrees
exhibited by the graph’s nodes should not grow as fast as the node count itself, since we should expect the
proportion of nodes with low degree to stay roughly the same as the node count increases. Observe that the
size of a region does not affect the cache space necessary to describe it using posts. Whether a region where
all nodes have degree 2 has 1,000 nodes or 1,000,000 nodes, we still only need one post at the beginning of
the region for our calculation.

1Many previous papers in the prefetching domain have used the term degree to refer to how far ahead to prefetch, but we will refrain
from using this terminology to avoid confusion with the term degree in the graph context, referring to a node’s neighbor count.
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Figure 3: The left chart shows a high-level design Neighbor Offset Extrapolation, which stores metadata
about where the degree changes, allowing us to calculate the location in the second CSR array of any node’s
neighbors, knowing only the node’s ID. The right chart shows data for a real graph, indicating how most
nodes have low degree. We excluded the less than 1% of nodes with degree ≥ 200 to make the chart easier
to read.

Figure 4: This chart shows the cache size in bytes required to store all NOE metadata, inserting a post at
every degree transition of each sorted graph in our evaluation set.

5.1 NOE Architecture
Functionally, NOE requires a separate partition of cache space to store the posts. The post cache is stored as
a sorted map, because we need to be able to find the post whose starting node ID is nearest to, but not greater
than, a given node ID.

Using a dedicated instruction, the software alerts the hardware of the locations and index size of the two
CSR arrays for the sorted graph, and the architecture automatically preprocesses the first array to record a
post for each node ID where the degree changes, storing both the node ID and the degree.

Once the preprocesssing completes, the architecture tracks the memory access stream to search for any
accesses within the second CSR array. When one occurs, NOE takes the Node ID at the location that was
accessed and performs a lookup in the post cache to determine the post whose ID is nearest to, but not greater
than, node ID the software accessed. Once we find this post, we perform the calcuation mentioned earlier to
determine the location and size of the neighbor list for the accessed node ID. We then issue a prefetches to
cover every cacheline required to fetch the entire neighbor list.
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5.2 Effect of Graph Size on Metadata Size
Increasing the node count does in fact slowly increase the metadata size, however, because larger graphs
present more opportunity for larger sets of degree values among high-degree nodes. When we tested two
smaller graphs generated in the same manner as those in our previous experiments (with 32768 and 131072
nodes), we observed that the required cache sizes were 5120 and 7776 bytes, respectively. Based on this
result, we suspect the relationship between node count and cache size is logarithmic, but we would need to
perform further experiments with many differently sized graphs in order to rigorously show this.

This reasoning also shows that sparse graphs, which have fewer different degree values among their nodes,
take less cache space than dense graphs. In particular, we would like to highlight an extreme example of this
effect we observed while using two graphs which represent real-world road maps. The nature of these graphs
makes it extremely rare to find nodes of high degree (try searching for a 126-way intersection the next time
you are out in your car). Specifically, nearly all nodes in these graphs have degree less than five, meaning
we can get away with an extremely small metadata cache for these graphs. Despite the fact the graphs have
nearly 2 million nodes, nearly double that of the dense graphs shown in Figure 4, we determine that NOE for
these graphs requires less than 128 bytes of metadata.

5.3 Using NOE as a Software Solution
We can also take advantage of the properties of the NOE cache in software to achieve a significant per-
formance improvement even with no hardware prefetcher available. Here, we introduce Software NOE, or
SNOE, which achieves a 20% average speedup over CSR across our benchmarks. SNOE works by replacing
the first array of CSR with a NOE post cache to achieve better spatial locality and cache peformance when
loading neighbor lists.

Recall that we expect sorted graphs to contain long series of consecutive nodes with the same degree, since
most nodes have low degree. For this reason, the first array in CSR, which is responsible for enumerating the
location and distance between the neighbor lists in the second array, will contain large regions that give little
useful information. Specifically, in a long sequence of nodes with degree D, whose first node has its neighbor
list begin at index N in the second array, the section of the first array responsible for those nodes will just
contain the values N, N +D, N +2D, N +3D, ... , since every node in the region has a neighbor list of length
D.

For this reason, we can greatly improve our performance by replacing the first CSR array with a software
implementation of the NOE post cache. In our previous example, instead of storing the redundant values N,
N +D, N +2D, N +3D, ..., we could instead just store the information that all the nodes beginning with the
first node in the region have degree D, and the starting node has neighbor offset N. Unlike the first array of
CSR, which suffers frequent cache evictions because it is too large to fit in the cache all at once, the NOE post
cache is very compact, taking only 17-18K of space as we showed earlier, and thus we expect it to achieve
much better cache performace. Each cache hit we get this way allows us to load a node’s neighbor list in
only one DRAM latency cycle instead of two, achieving the same optimization as when NOE is used as a
hardware prefetcher.

5.4 Limitations of NOE
5.4.1 Limit on Number of Prefetched Cache Lines on Neighbor Trigger

In nodes with very high degree, we may encounter cases where it is infeasible in terms of memory bandwidth
to immediately prefetch the entire neighbor list of the node we are traversing to. Because we observe that
most of our benchmarks iterate through the neighbor lists they load in a loop, we plan in our future hardware
implementation of NOE to place a hard limit on the number of cachelines fetched immediately when the
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Figure 5: Performance Speedup achieved using SNOE across our benchmarks.

trigger occurs, and then load the rest as needed with a basic next-line or stream [9] prefetcher. We are also
interested in exploring the idea of tracking the tempo of the loops through the neighbor lists and dynamically
adjusting the number of cache lines fetched on a trigger in order to prefetch just enough lines to keep the
prefetches timely. Such a solution may achieve the same performance benefits while reducing cache pollution
and preventing early eviction of the prefetched neighbors.

5.4.2 Limitation in Invertible Directed Graphs

NOE is also unable to fully optimize directed graphs that need both the graph and its inverse; that is, the
same graph with all edge directions reversed. Because nodes in these graphs can have different degrees in
the standard and inverse graphs, sorting both by degree would make the IDs of the same node different in the
two directions. For this reason, it is impossible to make the nodes appear in sorted order in both directions
and maintain the same ID for each node across both, meaning only one direction can be optimized.

5.5 NOE Evaluation
We evaluate NOE on the GAP benchmark suite [1], using the Linux perf tool [19], on a standard notebook
machine with an Intel Core i5 (8th generation) CPU with a 1.7GHz clock speed, 8 logical cores, 32K L1d
cache, 32K L1i cache, 256K L2 cache, and 6144 L3 cache. Although Intel does not publish the type of
prefetcher available in these cores, a bench test we performed showed there is likely no prefetcher present;
the perf [19] tool showed a cache miss rate well over 90% when looping through a long array in order, which
even a basic next-line prefetcher should be able to optimize. For these experiments, we utilized a variety of
graphs. We use fifteen graphs on the orde of 1 million node and 4 billion edges, as well as the two road map
graphs and two smaller automatically generated graphs mentioned in section 5.2.

Figure 5 shows the performance increase of the software implementation of NOE versus standard CSR
across our benchmarks. It achieves a 34% speedup in sssp (single-source shortest path), a 33% speedup in
bc (betweenness centrality), and a 10% speedup in tc (triangle counter), along with marginal gains in bfs

(breadth-first search) and cc (connected components). The pr (PageRank) benchmark was excluded from
our test because it uses invertible directed graphs and makes use of both directions equally. For this reason,
we do not believe NOE will improve performance in this benchmark.

The gains we see are a direct result of achieving fewer cache misses when traversing edges. The minimal
effect we see in breadth-first search and connected components can be attributed to excessive hardware cache
misses in the post cache, which SNOE relies on achieving good cache performance in order to see a significant
speedup. Figure 6 shows the fraction of the memory latency in each benchmark attributed to hardware cache
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Figure 6: Fraction of each benchmark’s total memory latency attributed to hardware cache missed in the post
cache.

misses in the post cache. Breadth-first search and connected components see the worst hardware cache
performance, with BFS specifically seeing 38% of its memory latency attributed to misses in the post cache.
This is consistent with our earlier results, showing that poor hardware cache locality is indeed the cause of
bfs and cc not achieving a significant speedup. We believe the higher-than-expected latency in the post cache
is attributed to long reuse distances in CSR, which [4] determined occurs through profiling experiments. The
high reuse distances cause the cache lines within the post cache to suffer frequent evictions from the hardware
cache, which causes additional latency when the corresponding nodes are loaded again.

Although most of these rates are below that of CSR, whose first array accounts for between 30-45% of the
memory latency across the same benchmarks, the frequent hardware cache misses in the post cache suggests
we should see even better performance gains by implementing NOE as a hardware prefetcher. In the future,
we would like to run the prefetcher in a hardware simulator, and compare the performance results with the
benefits we see in SNOE.

6 Merged CSR
In Merged CSR, we take a completely different approach to reducing the latency of loading neighbor lists,
which, unlike NOE, does not require sorting the graph first. Instead of storing metadata indicating the address
of each neighbor list, we instead merge the two CSR arrays, such that the data for each node originally in
both arrays is instead placed in one contiguous block. This allows all the data from the two CSR arrays to
achieve good spatial locality. We then reassign the IDs of every node within the neighbor lists to reflect the
index in the Merged CSR array at which that node begins.

The pointer from the first CSR array is repurposed to instead point to the next node in memory, since its
original purpose, referencing its neighbors, is now unnecessary, since the neighbors always begin one index
above the pointer. What we need to store, is some information about the degree of our node, or, equivalently,
how far forward to go in memory before the next node begins. In CSR this was achieved by taking the
difference between two consecutive neighbor offsets in the first array, which is no longer an option for us
because the cells are no longer adjacent in Merged CSR.

Another way to think about how Merged CSR functions is that we make the neighbors faster to access by
replacing the values in each neighbor list to point directly to the neighbor list of the neighboring node rather
than indirectly referencing the neighbors through the first array. One tempting question to ask, therefore, is,
"Is the first array in CSR necessary at all?", The answer to this question is more complicated than it appears.

As far as traversing the graph’s edges is concerned, the answer is no. If we replace each node ID in the
second CSR array with the index in that same second array of the neighbors of the node with that ID, we can
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Figure 7: Example of converting the graph in Figure 2 from standard CSR to Merged CSR. Observe that the
node IDs change in Merged CSR because they reflect the nodes’ start indices in the Merged CSR array. Each
node in Merged CSR has a single entry (full opacity) which references the start index of the next node, and
the remaining entries contain the node IDs that the node is connected to by an edge.

in fact reach the next node’s neighbors without any need for the first array. However, the internal node data
is typically stored in arrays that are indexed by the node ID, and this behavior requires the node IDs to be
consecutive values. If we allow the start index of a node in the single Merged CSR array to logically become
that node ID, the IDs will no longer be consecutive. Now we have the problem of needing to store some
information about how to find the node data. We propose several methods for doing this.

6.1 Locating Sequentially-Indexed Node Data
Since Merged CSR reassigns the nodes’ IDs to be non-consecutive values, we now have an issue when
needing to access internal node data stored in arrays indexed by a node’s original ID it had in standard CSR,
which we call the node’s sequential ID (versus the non-sequential ID used to reference a node’s position
in the Merged CSR array). We now introduce several strategies for efficiently accessing data indexed by
sequential IDs using Merged CSR.

6.1.1 The Lazy Approach

The simplest solution we could employ to handle the non-symmetric IDs is to just accept that our data will be
stored in arrays with large gaps. The trouble with this method is that the data memory usage takes O(V +E)
space complexity rather than O(V ). Although the DRAM latency cycle analysis from earlier shows that
we should be able to efficiently load the data even if it exhibits poor spatial locality, this method will be
particularly heavy on the OS page allocator because the array requires so many blank indices that serve no
purpose but to waste enough memory so the real data appears in the correct index. For very large graphs, we
may also begin to see performance losses due to the increased amount of page swapping required to maintain
the large memory overhead. In addition, the amount of time to initialize the memory may also significantly
increase, hurting performance even further.
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6.1.2 Sparse Array Notation

Typically, the problem of storing arrays with many blank indices is solved by using a dynamically allocated
sparse array data structure. Unfortunately, this solution will not always work in our case, because a sparse
array is implemented using indirection using an array of pointers to dynamically allocated sub-arrays. Just
like the indirection through the first array to find the neighbor list in CSR, having to pass through this indi-
rection to find the node data would almost certainly cause an additional cache miss per access because of the
graph’s lack of spatial locality.

6.1.3 Active vs. Passive Data Dependencies

At first glance, it appears that solutions such as sparse array notation for translating non-sequential node IDs
to sequential data will never achieve good performance because the incur an additional cache miss to reach
the data. However, unlike the neighbor list, the node data is not necessarily needed immediately to perform
a node traversal; this depends largely on the graph algorithm, and, as we will see soon with the following
three techniques, we will want to choose different time-space trade-offs depending on the node data’s role
in the algorithm. In the case of sparse array notation, we will certainly suffer performance losses in graph
workloads where the internal node data is a direct prerequisite to perform the neighbor traversal. On the other
hand, a workload which uses data for other purposes but not to decide neighbor traversals may be able to
swallow the additional latency.

We define an active data dependency as any use of node data where the data is required to advance to
the next node in the traversal, and loads to the next node must block until the data returns. An example of
an active data dependency is choosing a child in a BST find() operation. In this instance, we cannot know
whether to choose the left or right child until we learn how the value stored in the current node compares with
our search key. Depending on the implementation, A* [18] can also contain active data dependencies, as it
must compare the potential value with that of the target node to decide where to search next. (Note, however,
that in our evaluations using the GAP benchmark suite [1], the node potential value is stored as part of the
node structure, so it is not subject to this data dependency limitation. In CSR it is stored with the neighbor
pointer, and in Merged CSR it is stored with the node degree).

Conversely, we define a passive data dependency as a use of internal node data that does not block a
traversal to neighbor nodes. An example of this type of dependency is in breadth-first search. Consider a
BFS implementation which searches for a specific value or values in the internal node data to know if a node
is a match. In this instance, the node data is used only to find whether or not the algorithm can stop because
we found the node we were looking for. The algorithm is perfectly capable of traversing to more neighbor
nodes while it is waiting to find out while the current node is a match. In hardware, this behavior naturally
occurs because the match check load will sit in the CPU’s reorder buffer, while the neighbor loads can move
along (although we expect they will incur a cache miss themselves). If we find out later after loading several
neighbors that the current node is in fact a match, then we can stop the algorithm with no issues. Passive
data dependencies like this one are more tolerant to long wait times for node data because the software can
parallelize further edge traversals while waiting for the data to return.

We now propose three additional strategies for solving the problem of fetching sequentially-ordered node
data. A general rule of thumb is that if a workload contains active data dependences as a key component
of the algorithm, it is best to choose a format which produces the most timely loads for node data. If a
workload contains only passive data dependencies, one may find it more useful to choose a format which less
aggressively optimizes data loads at the benefit of space savings.
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6.1.4 The Double-Node Method

In this strategy, we insert an additional value with a node’s structure data, alongside the degree and neighbors,
which stores the node’s sequential ID. Adding the sequential ID allows us to point directly to the node data
from the node structure data, allowing us to return the node data to the sequential array notaion used in
standard CSR. However, the major caveat to this strategy is that we can no longer parallelize loading the
node’s neighbors and internal data as CSR does, because the logical pointer to the data is stored with the
neighbors. Instead, we would have to load the node’s degree, data pointer, and neigbors first using a pointer
from the previous node’s neighbors, and then load the data once we receive the data pointer. For workloads
with active data dependencies, this method is not recommended, because data-dependent traverals will require
two dependent cache misses per traversal, which is the same as standard CSR. On the other hand, workloads
with only passive data dependencies will likely see less performance loss from the extra cache miss, and
will benefit from this structure only requiring one additional value stored per node over what is required in
standard CSR. As the name suggests, this method requires 2V +E values stored in the Merged CSR array,
versus V +E for standard CSR.

6.1.5 The Double-Edge Method

This method intends to mitigate the Double Node Method’s issue that workloads with active data dependen-
cies will incur an additional load-load dependency when loading the internal node data that directly delays
the traversal to the next node. We can avoid this problem by storing the node’s sequential ID, which acts
as the logical pointer to the internal node data, alongside the node’s non-sequential ID in the neighbor array
in every node which has our node as a neighbor. This eliminates the load-load dependency we cited in the
previous strategy, because now it is possible to fetch both the node’s neighbor list (using the non-sequential
ID) and the node’s internal data (using the sequential ID) in the same DRAM latency cycle. The downside,
however, is the increased space cost required. Because we now have to store two values for each edge, the
number of indices in the structure array is up to V +2E, which is quite expensive for dense graphs.

6.1.6 Weaving the Internal Data into the Structure Array

The primary logic behind Merged CSR was to reduce memory latency by placing data which is likely to be
accessed together in the same or adjacent cache lines. For particularly data-bound traversals, we may find it
useful to apply this same logic to the internal node data as well. This strategy involve leaving a fixed amount
of space between each of nodes’ neighbor lists in the structure array to store node data. Because the data
appears alongside the neighbors, we should have no trouble loading it without a cache miss when the node
is first loaded, provided we use an aggressive enough next-line prefetcher to ensure all the data is covered.
In addition, since each node’s data slice is the same size, we could forgo having to store its size alongside
the neighbor list, and thus incur no additional memory overhead versus CSR. That is, the structure array size
V +E, excluding the node data, which is stored separately in CSR.

The trade-off in this case, though, is the flexibility the programmer has with the node data slices. Because
the data slices are interweaved into the graph structure, the slice size must be known at load-time, and it is
not possible to deallocate internal node data once it is no longer in use. Accordingly, although this method is
the most space efficient in the best case, in workloads which use many temporary data stores, one will likely
find that this method ends up using more memory, because the memory for the temporary stores must stick
around after it is no longer used. Luckily, it is entirely possible to use a hybrid scheme where temporary data
stores that cause only passive data dependencies are still stored using separate arrays, like in standard CSR,
and the weaved data slices are reserved for long-term data that causes active data dependencies, such as A*’s
[18] node potential values.
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Figure 8: The speedup achieved using Merged CSR compared to standard CSR

6.2 Evaluation of Merged CSR
We evaluate Merged CSR on the GAP benchmark suite [1], using the Linux perf tool [19] on the same
machine specs and graph set specified in section 5.5.

The control group in our experiments was the standard CSR implementation provided by the GAP bench-
mark suite [1]. Our evaluations for our experimental group were run on a reimplementation of that same
data structure. Our modified Merged CSR implementation follows the design described by section 6.1.5. We
chose this version largely because of our processor’s lack of prefetching. In order to obtain useful results,
we needed to stray away from techniques like the one in section 6.1.1, because merely initializing an array
with length proportional to V +E will perform extremely poorly. On an actual server in practice, it is unrea-
sonable to assume we will have no prefetcher at all, and even a next-line prefetcher would almost completely
eliminate the latency in initializing such an array. In our testing, just attempting to initialize an array of that
length with no prefetcher was solely reponsible for over 45% of the total cache misses for the experiment,
which is easily enough to shadow any performace differences we would hope to observe between Merged
CSR and standard CSR. In order to obtain useful data which was also the most applicable to a server with
prefetching, we needed to use one of the CSR techniques which allows the internal node data to retain its
original structure. Of the three such designs we suggested in section 6.1, we chose the design in 6.1.5 for
our evaluations because it should give us the best chance of observing the potential gains for benchmarks
such as sssp (single-source shortest path) which contain many active data dependencies. Figure 8 shows
the performance gains we achieve using Merged CSR versus standard CSR. By far, the benchmark which
achieves the largest performace gain is tc (triangle counter). We believe this is because this benchmark had
the most headroom to save in the first place. The main loop of triangle counter’s implementation is extremely
traversal-heavy, and it performs little expensive computation in between the traversals. Contrast this with
sssp (single-source shortest path), where we saw a 13% speedup on average. In our latency analysis, we see
over 40% of sssp’s memory latency stems for misses on other data structures, such as the queue, and various
node ID-indexed data arrays. Because of this additional latency, the optimizations Merged CSR provides
affect a much smaller fraction of the total memory latency, and thus we do not see the same dramatic speedup
we see in tc.

The benchmarks for bc (betweenness centrality), cc (connected components), and pr (PageRank) instead
see losses in performance as a result of using Merged CSR. These benchmarks all have one important charac-
teristic in common. All of these applications’ main loops iterate through the graph’s nodes in memory order.
With no prefetching, this operation is much faster in standard CSR than in Merged CSR, because in Merged
CSR we must traverse the nodes like a linked list. Moreover, the nodes are more spread apart than in the first
array of CSR, because the neighbor lists are inserted in between the nodes. This means that the fraction of the
time we incur a cache miss when traversing from one node to the next will be significantly higher in Merged
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CSR than in standard CSR, which puts a significant hindrance on our performance.
The bfs (breadth-first search) benchmark also includes a main loop which iterates through the graph’s

nodes in memory-order, but in its case we instead see marginal gains. Importantly, though, the performance
improvements we saw were almost entirely in the smaller and sparser graphs we tested. In the graphs we
used that represent road maps of the USA, we see upwards of a 70% speedup, and the smaller graphs we
tested (~100,000 nodes), we saw an average of about a 45% speedup. However, on large, dense graphs,
Merged CSR tends to suffer minor performance losses versus standard CSR. One possible explanation for
this behavior is that in sparse graphs, the fraction of the time we encounter a cache miss upon performing
each linked list traversal to the next node is smaller, since the neighbor lists between the traversal points will
be smaller.

The results for these last four benchmarks show that we may be able to improve performance even fur-
ther by introducing a simple prefetcher alongside Merged CSR. Specifically, we suspect that most of the
performace gains Merged CSR achieves by reducing the cache misses incurred in loading node neighbors
is cancelled out by the increased number of misses suffered when traversing the graph in memory-order as
a linked list with no prefetching. This hypothesis is supported by another observation we made during our
evaluations: these benchmarks encountered a much higher fraction of their overall cache misses in the code
function we used to traverse to the next node in memory.

Since the stream only goes forward in memory, we believe that introducing an aggressive next-line
prefetcher could lead to significant performance gains. In other words, even though changing from CSR
to Merged CSR in these benchmarks did not improve performance with no prefetching, it did translate a
major fraction of the memory latency to operations which are much easier to predict using previous hard-
ware prefetching schemes. In the future, we believe it is critical to discover if a simple prefetching scheme
can work in tandem with the improved memory locality introduced by Merged CSR to achieve singificant
performance gains. Therefore, it would be a useful experiment to run the Merged CSR benchmarks using a
hardware simulator where we can adjust the type and lookahead of the prefetcher, and analyze whether or not
prefetching can help alleviate the high miss rate caused by these traversals.

7 Conclusions
In this paper, we demostrated the ability to improve graphs’ spacial locality in order to reduce memory
latency. We demostrated the viability and practicality of our new Neighbor Offset Extrapolation prefetcher,
and showed that its software variant SNOE can significantly improve performance despite the poorer-than-
expected cache locality of the NOE post cache when implemented in software. We also demonstrated that
Merged CSR is able to improve spatial locality between nodes and their neighbors, leading to performance
gains in benchmarks whose main loop largely consists of edge traversals. However, we obeserve slowdown
in benchmarks whose main loop instead loops through nodes in memory order. This paper follows up on a
longstanding chain of work focusing on graph optimizations in the prefetching domain, and we demonstrate
the ability to apply techniques useful in hardware solutions to software optimizations in order to see moderate
performance improvements even with no prefetcher present.

8 Future Work
Our work paves the way for several future experiments and directions for exploration.

Firstly, we would really like to answer the question of how well NOE performs in hardware versus its
software variant SNOE. The memory latency data in section 5.5 shows that we would likely be able to
see further performance improvements in hardware, since the NOE prefetcher uses a dedicated cache for
posts and will not suffer from the frequent post evictions that SNOE does. We plan to implement the NOE
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prefetcher in a hardware simulator to test this hypothesis and gather additional data about NOE’s prefetch
timeliness and accuracy.

Secondly, we observe that prefetching the entire neighbor list for high degree nodes may be infeasible
in NOE. We are interested in analyzing the performance costs to ignoring high-degree nodes. If the cost
is significant, we would be interested in exploring methods for reducing the prefetch overhead for high-
degree nodes, possibly by placing a hard cap on the number of lines to prefetch, and then handling the
remainder using a different prefetching scheme after the neighbor loop begins. We may also choose to
explore dynamically adjusting the cap based on observed tempo of previous neighbor loops. Such a solution
may improve performance by reducing cache pollution and preventing early eviction of the fetched neighbors.

Thirdly, the performance issues Merged CSR suffers from in benchmarks whose main loop performs
an in-memory traversal of the graph’s nodes suggests that it may significantly benefit from a hardware
prefetcher. We are interested in experimenting with Merged CSR in a hardware simulator as well to test
different prefetchers to see if we can improve on our performance results.

Finally, we are interested in exploring the general domain of how hardware and software solutions
can work together. By considering both techniques simultaneously, we may come across combinations of
schemes that work to achieve greater performance gains than either one alone.
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