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Abstract—We present Sandcastle, an entropy-based browser
fingerprinting defense that aims to minimize its interference
with legitimate web applications. Sandcastle allows developers
to partition code that operates on identifiable information into
sandboxes to prove to the browser the information cannot be
sent in any network request. Meanwhile, sandboxes may make
full use of identifiable information on the client side, including
writing to dedicated regions of the Document Object Model.
For applications where this policy is too strict, Sandcastle
provides an expressive cashier that allows precise control over
the granularity of data that is leaked to the network. These
features allow Sandcastle to eliminate most or all of the noise
added to the outputs of identifiable APIs by Chrome’s Privacy
Budget framework, the current state of the art in entropy-
based fingerprinting defenses. Enabling unlimited client-side
use of identifiable information allows for a much more com-
prehensive set of web applications to run under a fingerprinting
defense, such as 3D games and video streaming, and provides a
mechanism to expand the space of APIs that can be introduced
to the web ecosystem without sacrificing privacy.

Index Terms—browser fingerprinting, information entropy,
sandboxing, k-anonymity

1. Introduction

The web has become an increasingly capable and diverse
platform. New HTML, CSS, and JavaScript standards have
allowed web browsers to run applications that, in many
cases, are as powerful and feature-full as native applications.
The web ecosystem today enables applications to perform
increasingly diverse tasks including 3D graphics, real-time
video, and access to USB devices.

Unfortunately, these features also enable third-party ac-
tors, such as advertising networks, to circumvent browser
protections against global tracking [1], [2] with fine-grained
fingerprinting. Fingerprinting allows a web page to identify
users using a collection of browser and device characteristics
exposed via browser APIs, and share that fingerprint with
an interested server. For example, the way in which pixels
are drawn to in a HTML5 canvas element can identify the

a specific GPU make and model, WebRTC APIs expose a
device’s internal IP address, etc. Though any single finger-
printing vector cannot, typically, uniquely identify a user
across web sites, attackers can generate precise fingerprints
by combining them.

Defending against fingerprinting is challenging. Legit-
imate applications use identifying web APIs, so removing
such APIs outright would preclude many useful applications.
Recent proposals, such as Chrome’s Privacy Budget [3], [4],
allow access to APIs but suggest limiting the total entropy
an application can learn through these APIs. Unfortunately,
such proposals face two major challenges. First, the browser
vendor must determine the entropy associated with each
API. However, evolving properties such as timing and preci-
sion make this a dynamic target that might change between
versions of the same browser. Second, this approach still
precludes many legitimate applications that make extensive
use of identifying APIs but share little or no entropy learned
from those APIs.

In essence, both categories of defenses punish applica-
tions for their access to identifying APIs, rather than for the
entropy they actually leak.

In this paper, we present Sandcastle, a novel finger-
printing defense that aims to permit legitimate web ap-
plication behaviors that must be excluded by traditional
defenses. Sandcastle relies on two key observations. First,
if an application reads identifying data but never leaks it
to the network, that data could not have contributed to
fingerprinting. Second, when data does leak to the network,
only the amount of entropy actually leaked contributes to
fingerprinting. For example, an application might read the
list of connected USB peripherals (which contains a lot of
entropy), but only leak whether it has seen any peripherals—
contributing very little entropy to fingerprinting.

Contrary to prior approaches, Sandcastle adopts a pay
for what you leak policy. Applications can access data from
identifying APIs as long as Sandcastle can ensure that data
does not leak to the network. When applications do leak
data, the data is charged to an entropy budget based on
the amount of entropy leaked, not the amount of entropy
accessed. As a result, trackers are thwarted because they
will not be permitted to leak sufficient entropy to identify
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a user, while still permitting many legitimate applications.
Applications that do not leak fingerprintable information
outside the browser do not suffer, and applications that do
are only charged for the amount they actually leak.

Sandcastle provides an API for sandboxing code that
enables applications to perform unlimited computation using
sensitive data on the client side, including access a con-
trolled DOM. Moreover, Sandcastle provides an expressive
interface to finely control the granularity of data leaked
outside the sandbox. These features allow applications to
tightly bound the quantity of sensitive information they
expose, enabling entire classes of applications that would
be blocked by previous defenses, like HD games and video
streaming, to run under a fingerprinting defense.

To achieve these goals, Sandcastle addresses a number
of technical challenges. Due to the dynamic nature of the
DOM and its interactions with CSS styling, data can leak
to the network through a variety of covert channels. For
example, changing the size of a DOM element can implic-
itly affect which CSS style rules are evaluated and thus
which background image is fetched for another element.
Moreover, Sandcastle allows arbitrary JavaScript to compute
over identifying data, potentially exposing a high-bandwidth
timing channel. Finally, Sandcastle must determine how
much entropy is actually leaked by the application without
a priori knowledge of the application behavior.

Sandcastle addresses these three challenges with careful
design of the sandbox. In order to control the entropy leaked
from a sandbox, Sandcastle requires applications to specify
the space of results sandboxes may produce and time quanta
at which those results may become available. To prevent
covert channels through the DOM, Sandcastle leverages
the browser’s same-origin policy to provide DOM regions
multiple sandboxes can share.

This paper provides background and motivating exam-
ples on fingerprinting attacks and defenses, describes the
design of Sandcastle and its prototype implementation in the
Chromium browser, and shows experimentally that Sand-
castle’s guarantees allow the browser to achieve significant
noise reduction over the state-of-the-art with minimal per-
formance overhead.

2. Background and Related Work

Browser fingerprinting attacks allow a server to uniquely
identify the device or browser installation accessing the
service without using any methods the browser deliber-
ately exposes for that purpose, such as session cookies.
Academics [5] and journalists [6] have found that several
advertising networks use browser fingerprinting to track
users across web pages without using third-party cookies.

Fingerprinting attacks generally involve combining
many sources of browser information together to produce
a fingerprint with fine enough granularity to identify indi-
vidual devices. For example, while the browser vendor, GPU
model, available memory, etc, each identify devices at only
a very coarse granularity, combining such data can identify
an individual device with high specificity.

Moreover, in order to be useful for tracking, fingerprint-
ing scripts aim to collect data that not only has high entropy,
but also stable over time, allowing the server to reliably re-
identify the same device. Therefore, the best fingerprinting
surfaces reveal properties of the machine the browser is
running on. Attacks that identify the type of CPU or GPU
on the system, the capacity of the system memory, or the
operating system the browser is running on are powerful
assets for the attacker, since this information is unlikely to
change over time and even persists across different browsers
on the same device [7].

Previous work has identified several sources of finger-
printable information in web browsers. After Mowery and
Shacham demonstrated the ability to fingerprint the user’s
GPU using the HTML canvas in 2012 [7], the community
has since added local IP addresses, WebRTC device IDs,
WebGL graphics, enumerating fonts [8], WebAudio channel
data, CPU and memory specs [9], and even peripheral
timestamps [10], among others. As these attack surfaces
continue to be discovered, trackers continually aggregate
them into JavaScript libraries like fingerprint.js [9], signifi-
cantly lowering the barrier to large-scale tracking.

Fingerprinting surfaces generally fall into one of two cat-
egories, called passive and active fingerprints [3], [5]. Pas-
sive fingerprints are information generated by the browser
for its communication tasks, such as HTTP request meta-
data, security headers, and network addresses. Meanwhile,
active fingerprints are leaked by browser APIs that untrusted
website code can obtain and leak through network requests.

In this paper, we focus on active fingerprints. While the
entropy budget concept Sandcastle uses applies to passive
fingerprints as well, the handling of passively fingerprintable
data is always performed by trusted browser code, meaning
the browser can trivially understand how much sensitive data
the server receives. Active fingerprinting is more interesting
for our purposes, because there is a fundamental disparity
between what untrusted website code might do and what it
actually does. For a robust defense, the browser must assume
sensitive data leaked by its APIs is used for tracking unless
it can prove otherwise. Our solution allows applications to
bridge this gap by guaranteeing to the browser they access
this data safely.

In response to the use of these attacks in the wild,
defenses against fingerprinting have recently been of par-
ticular interest in both the academic and browser develop-
ment communities. The most comprehensive approach is to
aggressively block access to sensitive information. Privacy-
centric browsers including Firefox [11], Brave [12], and
particularly Tor Browser [13] have all employed this strategy
to varying degrees. However, this strategy comes with the
serious drawback that it blocks entire classes of applications
that make legitimate use of the sensitive APIs and degrades
the user experience in general.

For example, consider the screenshot of Tor Browser in
Figure 1. To prevent an attacker leaking the screen size, Tor
Browser rounds the window width and height down to a
multiple of 100 pixels and fills the remaining space with
gray borders. While this mitigates use of the window size
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Figure 1: Tor Browser rounds the display size down to 100-
pixel increments to prevent websites from reading the screen
size, filling the remaining space with gray borders [14].

for fingerprinting, it also degrades the user experience for
most websites, which do not use it for fingerprinting.

More recently, fingerprinting defenses have aimed to
address these usability issues. Iqbal et al. [15] proposed
using machine learning to detect fingerprinting patterns,
though this is fundamentally a best-effort system and does
not intend to provide the same level of robustness as much of
the techniques we describe in the remainder of this section.

For a strong combination of flexibility and robustness,
existing browsers have generally adopted two major defense
patterns. Brave recently deployed fingerprint randomization,
which reduces the entropy of sensitive APIs by introducing
random noise [16]. Brave’s development team also high-
lighted a proposal to use a depleting entropy budget to limit
the amount of sensitive information the website can leak
while allowing limited use of sensitive APIs. [17]. Chrome’s
Privacy Budget proposal [3] suggests using both.

Unfortunately, both of these strategies run into practical
issues in their current forms. Introducing noise can still
be harmful to the application and is really only practical
for a few libraries like WebGL and WebAudio, where
the browser can be relatively sure the noisy data will not
harm the application, and solutions like PriVaricator [18]
and FPRandom [19] that use smart randomization to break
linkability between site visits cannot circumvent this issue
for APIs that have deterministic specifications. Even with
smart randomization, an online scheduling app would be
unwilling to tolerate even a small chance of displaying the
wrong time zone, for example.

As for the entropy budget strategy, both Brave’s and
Chrome’s development teams acknowledge entire classes of
applications like 3D games and audio analysis apps, that,
with any reasonable amount of noise, simply leak too much
information to be accommodated by the defense. Frustrat-
ingly, the servers of each of these legitimate applications
require little to none of the sensitive data the applications

access, but current browsers are not smart enough to un-
derstand that this usage pattern cannot possibly cause a
fingerprinting attack.

This is precisely the issue Sandcastle addresses with its
pay for what you leak policy. Because Sandcastle allows
developers to sandbox components of code that operate
on sensitive data on the client-side and only charges data
leaked, not data accessed, it enables entire classes of appli-
cations to run under an entropy budget defense that would
otherwise be blocked or be served data so noisy they could
not operate.

One other type of fingerprinting studied heavily in previ-
ous work is extension fingerprinting [9], [20]–[23], wherein
the attacker enumerates the browser extensions the user has
installed by serving DOM elements that tend to be modified
by extensions, such as banner advertisements that are deleted
by ad blockers. We consider these attacks out of scope for
Sandcastle, since they do not involve sensitive APIs, but
previous solutions like Simulacrum [24], which implements
a parallel DOM for extensions, and CloakX [25], which
diversifies client-side identifiers, have demonstrated working
defenses for these attacks that could be deployed alongside
Sandcastle. We also observe that extension fingerprinting
may not be incompatible with sandboxing, which future
work could leverage to allow Simulacrum’s strategy to run
with lower overhead.

3. Motivating Examples

The design of Sandcastle is based on two high-level
goals for the future of the web. First, we desire to allow as
many legitimate applications that run without fingerprinting
defenses to remain deployable with as little interference
as possible. Second, we aim to enable richer applications
by broadening the space of APIs web browsers can safely
expose. In this section, we highlight some examples of
applications that motivate these goals.

3.1. Resource-Intensive Online Game

The broadening feature set of the web and rising band-
width of the internet has led to the web becoming a popular
platform for gaming applications. However, modern video
gaming platforms tend to be rather resource-intensive, re-
quiring high CPU, memory, and GPU capacity in order to
perform their physics calculations and HD graphics render-
ing at high frame rate. Accordingly, gaming platforms often
desire to check if a player’s machine has the necessary hard-
ware resources to run the application before performing the
bandwidth-intensive task of downloading the game assets.

These types of hardware checks are by no means unique
to gaming applications. When ETS moved the GRE and
TOEFL exams online during the COVID-19 pandemic, the
web platform hosting the exam performed hardware com-
patibility checks before administration [26]. While testing
platforms are generally much less resource-intensive than a
modern game engine, the hardware checks were nonetheless
employed by the test administrators, since an incompatibility

3



in this setting can have high cost; it can lead to the forfeiture
of the student’s test progress and fees.

Unfortunately, a traditional entropy budget defense sig-
nificantly limits the scope of these checks, because the user’s
hardware specs are a high-entropy source of fingerprintable
information. Even though the server of such an application
needs only a single bit of information conveying whether
the user’s hardware is compatible, the defense blocks the
checks because it cannot distinguish between information
that can be leaked to the network and information that
is only used on the client side. Meanwhile, Sandcastle
allows this type of application to perform unlimited sensitive
hardware checks inside its non-network-accessible sandbox
without being charged for the entropy or suffering from
noise. Using this structure, the sandbox can display the exact
incompatibilities found, if any, to the user using Sandcastle’s
DOM sandboxes, but only leak and be charged for the single
bit of entropy the server requires.

3.2. High-Performance Video Streaming

Video streaming currently makes up about 75% of cur-
rent internet traffic [27], and designing advanced algorithms
to determine the highest possible resolution, or bit rate,
supported by the user’s network capacity has seen a great
deal of academic work in the past several years [27]–[31].
These Adaptive Bit Rate (ABR) algorithms must balance
several factors such as the buffer size, the network band-
width, and, for ABR schemes like NAS [30] [31] that use
superresolution to locally improve the video quality, the
available compute capacity.

Furthermore, experimental data from this space indicates
that ABR algorithms are quite fragile [29], where a single
poor bit rate decision often causes a cascading effect of poor
resource usage that can significantly degrade the quality of
experience (QoE) [32] for the user. Likewise, operating on
noisy data about the available hardware resources is unlikely
to obtain satisfactory streaming performance. Similar to the
previous example, Sandcastle accommodates this use case
with significantly reduced noise over existing randomization
techniques, because the browser is assured that only the bit
rate, chosen from a small set of options, is leaked to the
network, not the high-entropy data the algorithm uses to
decide on a bit rate.

3.3. System Resource Monitor

Finding all the hardware specifications of a machine and
examining its performance data often requires navigating
several native applications, and the procedure varies wildly
across different operating systems. Deploying such a system
on the web would be much more streamlined, but this is
an example of an application that depends on APIs that, for
good reason, do not exist at all in today’s browsers. APIs that
leak this type of detailed information about the system, such
as the CPU and memory usage across different processes,
would expose a plethora of identifiable information and

would be recklessly unsafe to deploy without an entropy-
based fingerprinting defense. Meanwhile, Sandcastle makes
this type of application possible and safe because all of
the information displayed in the DOM remains inside of
the sandbox and cannot be used for fingerprinting. More
generally, Sandcastle enables the browser to provide an
execution environment in which applications can perform
useful work with APIs that are entirely unsafe to deploy in
today’s browsers.

4. Sandcastle

Sandcastle is a novel fingerprinting defense that allows
web applications unlimited access to sensitive APIs inside
a sandbox. The sandbox is allowed to perform arbitrary
computation on data returned by APIs flagged as sensitive
without depleting its entropy budget and access sandboxed
DOM elements. However, it is unable to make network
requests or access program variables owned by the calling
context. Instead, it communicates with the calling context
through a narrow, prespecified interface. The calling context
is charged for the entropy leaked through that interface. In
this section, we discuss the challenges of building a practical
and robust fingerprinting defense and describe Sandcastle’s
design and implementation.

4.1. The Sandbox API

Unlike existing entropy budget strategies [3], [4], [17],
Sandcastle does not charge the entropy of a secret to the
entropy budget when it is returned from a browser API.
Instead, it asks the developer to specify possible exit states
of the sandbox. Upon returning from the sandbox, Sand-
castle reduces the remaining entropy budget minimum of
the entropy of the exit states and the entropy of APIs used
inside the sandbox. Sandboxes also enforce strong isolation
from each other and their calling context.

Example 1 shows a diagram of the sandbox API. To
invoke a sandbox, the programmer must specify the possible
return values the sandbox may produce and the time quanta
at which it may return. Together, these are the sandbox’s
exit states. The caller may also include an opaque ori-
gin ID, which enables JavaScript context sharing as well
as partitioning access to sandboxed DOM elements (see
Section 4.2). Finally, the developer provides a function,
and arguments to the function, to evaluate inside the sand-
box. After the sandboxed function completes, Sandcastle
restricts return values to those specified in the exit states
or undefined (to cover all other return values).

Arguments to and return values from the sandboxed
function can be of any type that can by copied across
the sandbox isolation boundary. This is implementation
dependent (Section 5) but generally includes most JavaScript
objects, but not functions [33].

Using the coarse isolation granularity of a sandbox
allows Sandcastle to control entropy leaked through timing
channels. Because Sandcastle permits the application to run
arbitrary code inside the sandbox, an attacker can express
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Example 1: The Sandbox API

var r = sandcastle.sandbox(
[true, false],// Possible return values
[10, 20, 30], // Possible return times (ms)
"opaque_1", // Opaque origin ID
function(arg1, arg2) { // Sandbox code

return arg1 + arg2 < someSecret();
}
1, 2 // Arguments

);

additional entropy beyond the return value entropy by vary-
ing the sandbox’s exit time. For example, the sandbox could
sleep for a secret-dependent length of time, allowing unsan-
boxed code to infer the secret by measuring the sandbox’s
execution time. Worse, browsers cannot easily bound the
entropy of these timing channels. While browser timing
APIs have historically introduced some noise to prevent
other side-channel attacks, the attacker can cope with this
noise by decreasing the granularity of their sleep.

Sandcastle handles this problem by requiring sandboxes
to list the time quanta at which they may return. When a
sandboxed function completes, Sandcastle waits until one
of the remaining exit times before returning. If the longest
provided interval is reached before the function completes,
the sandbox aborts and a timeout is returned1 By requiring
sandboxes to be explicit about their ability to cause timing
channels, we transform the high-bandwidth space of return
times to a small discrete set that carries developer-chosen
entropy. Often, the developer can choose a conservative
but reasonable quantum leaking only a single bit—that the
function indeed returned.

One consideration for Sandcastle’s API consumers is
how to choose an exit time, when the website code may
run on heterogeneous hardware with different processing
speeds. If no times are specified in the API, Sandcastle uses
a default execution time of 20 ms, which is sufficient for
non-time-sensitive applications. However, high-performance
apps that utilize many sandboxes may be unsatisfied with
this overhead. In cases where performance matters, the
developer can choose to perform a lightweight benchmark
of the hardware at the start of their application that leaks a
small amount of entropy.

For instance, if the developer possesses a benchmarking
function designed to run for 1 ms on a 5 GHz processor,
she could sandbox the function with the exit time list [1.00,
1.11, 1.25, 1.43, 1.67, 2.00, 2.50] (all times in ms) to profile
the CPU from 5 GHz down to 2 GHz in 0.5 GHz increments.
Though this strategy charges a few bits to the application’s
entropy budget up front (3 bits in this example, since a
timeout is a hidden eighth exit time), it eliminates the need
to list multiple exit times on each sandbox the application
spawns, saving the application entropy in the long run.

Another related concern is estimating performance time
in the face of JIT compilation. Previous work has shown that

1. This behavior is only guaranteed in the noise model’s default error
handling mode. For more details, see Section 4.4.

existing JavaScript engines provide poor timing guarantees
due to their complex methods for determining when and how
much to optimize code [34]. Sandcastle does not provide
any specific APIs dedicated to profiling JIT optimization.
However, because sandboxes allow their exit times to be
chosen at runtime, they still provide developers useful op-
tions if they know they will run a high-performance function
inside a sandbox many times. First, they could convince the
browser to optimize the function up front, say, by repeatedly
running it at the start inside a sandbox that leaks no entropy.
Alternatively, they could occasionally probe their sandboxes
for faster times at fixed intervals, and shift to the faster time
as the default if the sandbox returns in time. This second
method does not require any profiling up front, but makes it
more challenging for the developer to bound the amount of
entropy spent profiling. Which side of this tradeoff to prefer
is specific to the needs of individual applications, depending
on how much entropy they expect to spend for non-profiling
work and the importance of fast startup times.

4.2. Sandboxing DOM Elements

One of Sandcastle’s major goals is to allow the web
developer to avoid the cost of leaking sensitive data when
it is only used on the client side. Likewise, it is strongly
desirable to allow sandboxed code to write sensitive data to
Document Object Model (DOM) elements without incurring
any cost. This capability enables Sandcastle to guarantee
privacy for applications that use advanced web features like
HTML canvases and WebGL graphics, including 3D games
and HD video rendering — use cases the original Privacy
Budget proposal references as impossible to support [4].

Meanwhile, the requirement to allow sandboxing DOM
elements poses an interesting problem: how can we allow the
application to safely write sensitive data to the DOM without
allowing unsandboxed code to read and leak it? Naively,
we could attempt to annotate individual DOM objects with
the secrets obtained by the sandboxes that write to them.
However, this strategy is insufficient, because modifications
to DOM objects that change their size can affect the po-
sition and size of neighboring objects. If Sandcastle only
considered secrets attached to the object that is actually
read, an attacker could encode a secret value in the size
of a DOM object, then leak the secret by reading, say, the
offsetLeft attribute of the sibling object.

Further, recent advances in CSS styling such as flexible
boxes [35] and lazy loading of resources based on the
viewport [36] make maintaining a mapping between DOM
elements and secrets an extremely difficult task. While we
cannot categorically determine such a strategy is impossible,
our analysis of this direction indicates that as flexible and in-
novative layout and styling options continue to be developed
for the web, the implementation of such a defense would be
prohibitively impractical to maintain, if not just incorrect.

Instead, Sandcastle requires that all DOM objects created
or modified by sandboxes must live inside a dedicated
<iframe> element the browser has special awareness of,
which we call a DOM sandbox. While this strategy does
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Figure 2: Partitioning the DOM using opaque origins and
DOM sandboxes, which are based on anonymous iframes.

prevent a few specific use cases like integrating flex lay-
outs across the sandbox boundary, DOM sandboxes greatly
simplify our DOM management scheme, and also allow us
to leverage a relatively new addition to the browser privacy
space: anonymous iframes [37], [38].

Anonymous iframes are a special type of HTML iframe
that was recently standardized to support flexible resource
loading under the cross-origin embedder policy (COEP)
[39], which is beyond the scope of this paper. What is im-
portant for our purposes is that, under normal circumstances,
the browser’s same-origin policy allows an iframe’s DOM
to be accessed by its parent only if the iframe and the parent
were served by the same website, or origin. Meanwhile, an
anonymous iframe prohibits access from its parent, even if
such an access would normally pass under the same-origin
policy [37], [38]. Thus, Sandcastle can allow sandboxes
to write sensitive data to the DOM in anonymous iframes
and guarantee the data is hidden from unsandboxed code.
Privacy is protected by the same-origin policy!

To maximize flexibility of the sandboxed DOM, includ-
ing access to HTML5 storage, both code sandboxes and
DOM sandboxes can be assigned to an opaque origin2 [41].
As Figure 2 illustrates, opaque origins allow the developer
to specify partitions of code and DOM elements that share a
collection of sensitive data. Opaque origins allow sandboxed
regions of the application to guarantee to Sandcastle that
any sensitive data observed in one opaque origin cannot
be viewed by another, which, as we will see in the next
section, can allow the cashier to charge less entropy when a
leak occurs. Sandcastle also automatically shares the same

2. Opaque origins on anonymous iframes are currently in limbo in the
W3C proposal due to anticipated difficulties in standardizing the behavior
of opaque access to storage APIs [37], [38]. If this constraint remains,
future deployments of Sandcastle may be limited to a single anonymous
opaque origin per page context, and the remainder of the opaque origins
could use sandboxed iframes [40], which already support opaque origins,
but not storage APIs.

JavaScript context between sandboxes that use the same
opaque origin, which simplifies implementation of global
state and event handling inside the sandbox without affecting
the cashier’s ability to reason about the secrets accessed.

4.3. The Cashier: Charging for Secrets

Many applications use identifying APIs but never leak
their results to the network. However, some legitimate
applications, for example video streaming, do send small
amounts of sensitive data over the network. Sandcastle’s API
permits this by charging for entropy based on the minimum
of the exit states’ entropy and the entropy of APIs used
inside the sandbox. Accounting for this leaked information
is delegated to a feature we refer to as the cashier. The
cashier’s responsibility is to ensure that any entropy leaked
to unsandboxed code is charged to the context’s entropy
budget while aiming to charge as little entropy to the budget
as possible.

If the programmer had perfect knowledge of how much
entropy each secret contains at all times, optimally uphold-
ing this invariant is a simple task, because the cashier would
need only consider the entropy of sandboxes’ spaces of exit
states. Then, the programmer could decide whether or not
to sandbox an access to a secret by comparing the secret’s
entropy with the granularity she needs. However, requiring
the programmer to understand the entropy of secrets is
error-prone and complicates development. Worse, it is not
straightforward to abstract this decision into a third-party
JavaScript library, because a browser API that reveals the
entropy remaining in a secret can itself leak entropy, since
a previous sandbox could have chosen to access a secret
based on branches depending on other secrets.

Likewise, Sandcastle’s cashier does not assume sand-
boxes access more entropy than their spaces of exit states
convey, and aims to prove the lowest safe cost in both cases.
One important factor in this goal is to avoid charging any
piece of sensitive data more than once when it can prove it
is the same data, which is a complex task. In this section,
we describe at a high level how the cashier is designed and
the problems it addresses, and we provide a detailed formal
definition in Appendix A.

Example 2: This sandbox operates on two secrets, but the
cashier cannot determine how many bits of each secret the
return value carries.

sandcastle.sandbox(7, [10, 20], function() {
var A = secret_a();
var B = secret_b();
var r = ...; // Do something with A and B.
return r;

});

The Cashier Uncertainty Principle Consider the code
in Example 2. This sandbox calls into two functions
secret_a, and secret_b, producing two secret values,
which we will call A and B. Suppose A and B each begin
with 8 bits of entropy. If we ignore error states for now,
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this sandbox produces an 8-bit exit state, seven from the
return value and one from the time quanta. However, what
is it 8 bits of — 8 bits of A? 8 bits of B? 4 bits of
each? Unfortunately, without any knowledge of what the
sandboxed function does, it is not clear from the outside
which secret to deplete the 8 bits from.

Even worse, this information is critical for the cashier to
know exactly; otherwise, an attacker can leak bits without
the cashier’s knowledge. For example, suppose after running
the sandbox in Example 2 the cashier lazily depleted 4
bits from each secret. This seems safe, because the entropy
charged equals the entropy leaked. However, this is not safe
enough. Suppose the attacker had set r = A in the sandbox,
making the true value leaked represent all 8 bits of A and 0
bits of B. Then, the attacker could spawn another sandbox
that leaks all 8 bits of B. Now, because the cashier believes
4 bits of B were already charged by the first sandbox, it
thinks charging only the remaining 4 bits is sufficient. If it
does, the attacker will learn all 16 bits of A and B, but only
be charged 12 bits total!

As it turns out, this strategy will never work unless the
cashier knows exactly how much of each secret the exit
state is comprised of. However, because untrusted JavaScript
cannot be safely reasoned about while upholding our side
channel defenses, the amount of entropy to deplete from
each secret is invisible to Sandcastle. We refer to this
phenomenon as the cashier uncertainty principle.

Embracing the Uncertainty: Saturating Secret Sets At
first glance, it seems the cashier uncertainty principle would
make it impossible for the cashier to make any nontrivial
cost improvements. However, if we make the cashier ex-
pressive enough to record and reason about its uncertainty
about which secrets are responsible for leaked bits, we can
still make powerful cost optimizations!

To do this, the cashier utilizes a technique of set sat-
uration. In Example 2, since the cashier does not know
how many bits of each secret comprise the return value,
it instead attributes 8 bits to the set, {A,B}. Then, suppose
the cashier later encounters another sandbox that leaks 12
bits after accessing A and B. In this case, the cashier can say
something nontrivial about the cost, because no matter what,
the set {A, B} only had 16 bits of entropy at the start. Thus,
even without knowing how much of each secret contributed
to the 8 bits leaked by the first sandbox, it knows it does
not need to charge A and B more than 16 bits in total, so it
is safe to charge only 8 bits for the second sandbox instead
of the full 12. At this point {A,B} has been charged its full
entropy, and future sandboxes accessing that pair of secrets
can return for free. Here, we say {A,B} is saturated.

The cashier can also make strong guarantees across
different sets of secrets. For example, saturating {A,B}
as above implies A and B are individually saturated as
well, so sandboxes operating on A or B alone also incur
no cost. Further, it can be useful to consider sets that have
not been explicitly charged. Suppose A, B, and C are 8-bit
secrets, and the cashier has already charged 8 bits to each of
{A,B}, {A,C}, and {B,C}. This implies that {A,B,C}

is saturated, since all 24 of its bits were spent on its subsets,
even though no sandbox actually accessed all three secrets
together. This would allow, say, A alone to be leaked for
free, even though neither of {A,B} or {A,C} is saturated.
Finding the Optimal Set Using this saturation principle,
the goal of Sandcastle’s cashier algorithm is, for a set S of
secrets being leaked, to find a superset of S that is closest to
saturation (having the fewest bits left to spend), and charge
the minimum of this saturation distance and the entropy
leaked through the sandbox’s exit state. While searching
all supersets can potentially be an enormous search space,
we optimize the algorithm to consider only sets that have
a chance to guarantee the lowest safe cost of S. At a
high level, this is achieved by considering a graph of all
secrets the cashier has seen, with edges connecting secrets
that could have been accessed together. Using the secret
graph, sets that contain secrets disconnected from any secret
in S can be disregarded, as can sets that break chains
between one or more of their elements and S. That is, a
cashier that has seen, say, the sets {A,B}, {B,C}, and
{C,D}, when calculating the cost of {A}, should consider
supersets such as {A,B} and {A,B,C,D}, but may ignore
sets like {A,B,D} because D’s only connection to A was
through C, which was excluded from the set. We prove these
optimizations are sound (and optimal) in Appendix A.

4.4. Noisy Exit States

While Sandcastle’s main goal is to reduce the amount
of noise that must be added to the data leaked outside of
its sandboxes to maintain privacy, there exist some usage
patterns where it cannot be entirely eliminated. In exist-
ing entropy budget defenses, optimally introducing noise is
challenging because the perturbation to apply to the return
value in order to introduce the desired noise depends on
the space of return values the API actually returns [42]. For
example, if a sensitive API returns either of the string values
"foo" or "bar", then a naive character perturbation that
transformed "foo" into "fon" or "fop" would prove
almost entirely useless at adding noise.

Meanwhile, because the possible exit states from Sand-
castle’s sandboxes are defined by the programmer, Sand-
castle can adopt a universal noise model that works for all
sandboxes. The model’s goal is to steadily increase the noise
added to exit states as the entropy budget depletes, and, for
each sandbox, produce a probability distribution over all of
its possible exit states with Shannon entropy [43] equal to
the desired noise. That noise entropy may then be subtracted
from the entropy the exit state would leak without noise.
Aggregating Noise over Time For starting budget B, Sand-
castle determines the quantity of real entropy to be leaked
for the ith logical bit using the exponential decay function

E(i) = e
−i
B

This function has the convenient property that∫ ∞

0

E(i)di = B
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meaning that as long as we can always add noise in accor-
dance with our decay function, we will never overcharge the
budget after leaking any number of logical bits. To convert
between the continuous function E(i) and a discounted
entropy of our n-bit exit state, we calculate the height of
a rectangle of base n with area equal to the area under E(i)
over the range of the n logical bits being leaked.

Back to the Future: Avoiding Impossible Time Quanta
Once we know the desired amount of noise, Sandcastle must
produce a probability distribution over the available exit
states with the correct Shannon entropy. However, Sand-
castle first attempts to reduce the entropy of the exit state
space by removing times from the beginning of the list of
time quanta if more than one is listed. This has the effect
that a sandbox that returns before an early quantum may
not actually have a chance to return at that time. While this
seems like a simple waste of running time, it comes with
the benefit that the noise Sandcastle must add to the return
value can be reduced or eliminated, maximizing the chance
we return the correct value to the caller. After all, most
applications whose execution time is variable enough to
necessitate listing multiple time quanta would rather receive
the correct value slowly than an incorrect value quickly.

This transformation also avoids the issue that we cannot
go back in time! If a sandbox returns in time for a 20
ms quantum, we cannot use an exit state with a 10 ms
quantum in our noise distribution, because it is impossible
for Sandcastle to actually honor that exit state; the sandbox
has already run for longer than 10 ms. Worse, in high-noise
situations, creating a distribution over exit states with the
remaining possible times can fail to reach the necessary
noise. Removing quanta first avoids this problem because
it allows introducing noise arbitrarily close to the entropy
of our reduced exit space. Thus, Sandcastle prevents timing
side channels from leaking more entropy than noise can
cancel out by preventing them from happening altogether.

Generating a Noise Distribution In cases where the desired
noise exceeds what can be introduced by reducing the space
of return times, Sandcastle creates a probability distribution
over the return values to introduce the remaining noise. Each
return value receives a rank, based on its Manhattan distance
from its index to the index of the true return value. For
example, a sandbox that lists return values [10, 11, 12, 13,
14] that returns the value 11 will produce the rank list [1,
0, 1, 2, 3]. We then convert the rank list to a probability
distribution using the rule

Pr[Rank r] = δrPr[Rank 0]

for properly chosen exponential3 decay factor δ, and
Pr[Rank 0] determined by properly normalizing all the prob-
abilities once δ is chosen. Then, we determine the correct

3. Like with the noise aggregation function, the use of an exponential
decay function here is an arbitrary decision. If more flexibility is needed,
other distribution shapes could be added in the future.

value of δ via binary search4 in order to achieve the entropy
dictated by our noise aggregation function to generate the
final probability distribution. Finally, we use our probability
distribution to choose a cell corresponding to our noisy exit
state using a secure random number generator.

Error Handling with Noise There is one final issue to dis-
cuss with respect to the noise model: error handling. So far,
we have assumed that our sandboxes are well-behaved; that
is, they will always complete before the longest available
quanta and return a value that matches one of the return
values in the list. If we relax this assumption, our noise
model requires an additional layer of complexity.

Naively, we might treat these events as special, where
errors are returned immediately without invoking the noise
model at all, and design the noise model based on that errors
never occurring. Unfortunately, this method introduces a
side channel for the attacker, where she could convey sen-
sitive information by deliberately returning an invalid value
or timing out. Even with maximal noise added to the space
of non-error exit states, there are still three basic exit states
the attacker can observe: {No Error, Timeout, Invalid Return
Value}. In other words, with this error handling method, it
is fundamentally impossible to guarantee the sandbox leaks
fewer than log2 3 bits.

Even with this lower bound, this naive error handling
method is still the best for debugging and applications
that do not strain the entropy budget. However, under this
strategy it is not possible to make unlimited calls to high-
entropy sandboxes. For these use cases, Sandcastle offers
the option to either make errors fail silently with a random
return value, or to treat errors as legitimate return values
that can be occasionally introduced spuriously by the noise
model. Both options avoid this lower bound.

5. Implementation

We implement Sandcastle as a set of libraries added
to the Chromium browser, using a combination of C++
and Rust. All of our code is publicly available and inte-
grates fully with Chromium’s build system. We welcome
the community to submit improvements to the performance
and flexibility of Sandcastle itself, and especially encourage
the development of JavaScript libraries that abstract over
Sandcastle’s core primitives to make safe, private web de-
velopment simple and ergonomic for developers.

Sandbox We would like to reiterate that Sandcastle is not
a JavaScript isolation framework on its own. Rather, it is
a framework that can utilize existing and future isolation
techniques for the web to enforce a robust and minimally
invasive fingerprinting defense. The existing Web Workers
[44] API is one such isolation method, which provides all of
the necessary isolation guarantees in its current deployments

4. In principle, we could avoid this binary search if we could analytically
determine the correct δ for a provided entropy. However, due to the number
of edge cases in handling the edges of the list at all possible positions of
the Rank 0 cell, we did not explore this direction.
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across all major browsers. However, it incurs high overhead
due to its use of dedicated threads for each task. Meanwhile,
COWL [45] has demonstrated the ability to provide the same
isolation guarantees at lower overhead.

Likewise, because Sandcastle’s sandbox abstraction is
the core primitive for developers to express what sensitive
data particular code has access to, future deployments of
Sandcastle would greatly benefit from a lightweight isola-
tion framework, allowing our our browser API to spawn
several sandboxes within a single web context with minimal
overhead. Accordingly, the sandbox implementation we use
for our evaluations in Section 7 is designed to have similar
performance to COWL’s Lightweight Workers [45].

Cashier and Noise Model Our implementation of the
cashier and noise model incorporate all of the methods
we describe in Sections 4.3 and 4.4, respectively. We also
design and optimize both of these components for strong
performance properties. Of particular note are our use of a
combination of Tokio [46], a Rust concurrency library, and
Chromium’s internal JavaScript timing API to implement
Sandcastle’s time quantization without spawning additional
threads, and our optimization of the noise model’s rank and
probability lists to require only constant memory space.

6. Case Studies

In this section, we provide a examples that illustrate how
Sandcastle performs in the real world. Here, we demonstrate
Sandcastle’s abilities to both defend against fingerprinting
and accommodate legitimate applications.

6.1. Fingerprinting Attack

Fingerprint.js [9] is a well-known open-source browser
fingerprinting library, that offers TypeScript implementa-
tions that exploit several well-known fingerprinting vectors,
including canvas fingerprinting, WebAudio signal analysis,
hardware fingerprinting, and preference profiling, among
others. In this section, we demonstrate how Sandcastle
enables defending against fingerprinting attacks in a way
that is much more flexible to the application than what
is possible with currently deployed browsers. For each of
the fingerprinting attacks in fingerprint.js that leverages a
sensitive browser API, the sandboxing process looks the
same, so we use WebAudio fingerprinting as an example.

The WebAudio library [47] is an expressive framework
that enables the developer to choose and mix different
audio sources, create audio visualizations, and apply a
plethora of effects to customize the sound that plays in a
web application. Unfortunately for the browser, this frame-
work also provides the capability to retroactively analyze
the sound played played in the audio channel using the
getChannelData() function. Similar to canvas finger-
printing, this function creates a dangerous feedback loop
between the application and the underlying hardware that
enables the attacker to learn identifying information.

Example 3: WebAudio fingerprinting attack from finger-
print.js, modified to write the fingerprint to the DOM.

document.getElementById("leaked").textContent
+= getHash(buffer.getChannelData(0)
.subarray(hashFromIndex));

Example 4: Rendering a full-entropy and leaked low-entropy
version of the WebAudio fingerprint with Sandcastle.

sandcastle.createDOMSandbox(
"opaque_1", "sb-frame", "parent", true,
"<p id='sbfp'>Sandboxed fingerprint: </p>"

);
let leakedFP = sandcastle.sandbox(4, [],

"opaque_1", function(hfi) {
function getHash() { /* Code here */ }
document.getElementById("sbfp").textContent
+= getHash(buffer.getChannelData(0)
.subarray(hfi));

}, hashFromIndex);
document.getElementById("leaked")
.textContent += leakedFP;

Fingerprint.js exploits this feedback loop by playing a
fixed audio track and hashing the audio channel data to
obtain a fingerprint. Example 3 shows the critical section
of code that performs the attack, which we modified to
draw the hash directly to the DOM. Figure 3a shows the
outcome of running the attack in unmodified Chrome, where
the sensitive data leaked by the getChannelData() call
is displayed as a hash on the (unsandboxed) DOM, demon-
strating that the fingerprint can be leaked to the network,
stored in untracked browser storage, or otherwise escape
the client-side web context.

Contrast this with the variant of the same attack in
Example 4. In this instance, we first create a DOM sandbox
with Sandcastle’s built-in createDOMSandbox() func-
tion, belonging to the opaque origin opaque_1. Next, we
create a standard sandbox to place around the line of code
that calls into the sensitive getChannelData() API.
Supposing the developer decided they wanted to leak a
secret-dependent value with a 4-bit granularity, the sandbox
declares it will leak a 4-bit return value and that it will
take ownership of the opaque origin opaque_1 so that it
has permission to write to the DOM sandbox we created.
We also move the getHash() function declared elsewhere
in the script inside the sandbox, enabling us to perform

(a) (b)

Figure 3: Sandcastle enables access to the entire WebAudio
fingerprint only inside the sandbox.
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the hash computation in the sandboxed context. Figure 3b
shows the result of running Example 4 in Sandcastle, where
the script writes two copies of the fingerprint to the DOM:
one full-entropy copy inside the DOM sandbox, and a low-
entropy copy that was leaked and charged by the cashier.

For completeness, we provide documentation of all of
the types of fingerprinting the fingerprint.js library performs
and their relationship to Sandcastle. Most of the fingerprints
the library uses require browser APIs that must be invoked
by a script. In addition to WebAudio channel data, these
types of fingerprints include canvas fingerprinting as well as
reading the color depth, CPU class, amount of system mem-
ory, font preferences, concurrency support, platform, screen
frame, screen resolution, time zone, number of supported
touch points, vendor, and vendor flavors.

Each of these fingerprints can be sandboxed to provide
flexibility at the client-side in the same manner as in our
WebAudio example, and it is simple to mark their APIs as
sensitive so that the browser can charge their entire entropy
if called outside the sandbox, as Privacy Budget does [3],
[4], or in the strictest of defenses, block their use entirely
outside the sandbox. Two other sources, the availability of
session storage and the deprecated WebSQL library, while
still sandboxable in this manner, would be prohibitively
restrictive to block outside the sandbox. However, these
features do not carry any information that could not be
extrapolated from passive sources, particularly the user’s
browser version, so they are of little additional concern.

We also identify two classes of fingerprints that finger-
print.js uses that we cited in Section 8 as posing a chal-
lenge for Sandcastle. One attack performs explicit extension
fingerprinting to determine the presence of Ad blockers,
and another sequence of attacks read CSS display features
including color gamut, contrast preference, dynamic range,
forced colors, inverted colors, monochrome preference, and
reduced motion preference.

6.2. Accommodating a Legitimate Application

Keeping with WebAudio as an example, we now demon-
strate how Sandcastle can safely allow a legitimate applica-
tion that would otherwise be fingerprintable. The WebAudio
DJ [48] is a browser application that uses WebAudio to
mix several pairs of percussion tracks fetched from the
internet. Crucially, the app also takes the channel data
generated by WebAudio and renders it to the DOM using a
Spectrogram, provided by the third-party NexusUI [49]
library. Since this rendering process introduces the same
hardware feedback loop as in our previous example by
using WebAudio’s AnalyzerNode class, existing defenses
would not allow this application.

Meanwhile, Sandcastle enables the DJ to run under a
fingerprinting defense with minimal refactoring. First, we
create create two DOM sandboxes that house the <div>
elements the spectrogram uses to render the channel visual-
ization. Then, we create a single large code sandbox in same
opaque origin that contains all of the audio logic, including
the DeckPlayer class, and the helper functions that are

Figure 4: How Sandcastle accommodates the WebAudio DJ
application. The red dotted lines are DOM sandboxes.

called by the event handlers. Then, each time the application
receives an event that the user loads a new track, changes
the volume, or moves one of the dials, we create a new
sandbox in the event handler using the same opaque origin
(sharing the context with the main sandbox), and calling
the respective helper function from inside the sandbox. This
design allows the spectrogram visualization to run entirely
inside the sandbox, where Sandcastle can guarantee it poses
no fingerprinting threat. Figure 4 shows a representation of
the WebAudio DJ application, with the sandboxed DOM
elements highlighted. Since the sandboxes in this example
are purely taking in trusted data and rendering content
inside DOM sandboxes, they do not leak any entropy5,
meaning this application can continue to respond to user
requests indefinitely. To illustrate a case where Sandcastle’s
leaking mechanism would be useful, suppose we modified
the DJ app to introduce an error reporting feature, where
the application reports to the server that an audio track it
served was broken or incompatible with the user’s browser.
To implement this, the developer could write the sandbox
to return a boolean value representing whether WebAudio
crashed when playing the track. Thus, only a single bit of
entropy is leaked, and the browser is sure that the server
only learns whether the track crashed while playing, not
arbitrary channel data from the player.

7. Evaluation

In this section, we provide empirical data demonstrating
Sandcastle’s performance characteristics and its ability to
reduce noise for leaked information. All of our experiments

5. We can use the silent error handling mode here to prevent the sandbox
leaking a single bit by way of not returning a timeout each time it is
called. If we do not do this, Sandcastle would eventually fall back to failing
errors silently when the budget is exhausted, making it benign in this case.
However, silent mode could be used to maintain our budget if other parts
of the application happened to need it.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Our experimental results demonstrate that legitimate applications will incur minimal performance overhead from
Sandcastle, and that reducing the entropy of a leak using the sandbox API achieves significant noise reduction.

were performed on an HP Elitebook 850 notebook with an
Intel Core i5 CPU with 8 logical cores running at 1.7 GHz
and 16G of DRAM, running Ubuntu Linux 20.04 LTS.

7.1. Performance

Computation Overhead We measure Sandcastle’s compu-
tation time overhead across a variety of usage patterns using
the Linux perf tool [50], comparing against the baseline of
running identical sandboxed code in the calling context. For
a correct comparison, we ignore any time spent sleeping to
perform time quantization, since that time is controlled by
the programmer, and measure only the overhead introduced
by Sandcastle itself. To ensure a fair measurement across
several amounts of noise, our times are averaged over five
consecutive sandboxes run under the same cashier. Further,
since the index of the actual return value in the provided
list can affect the shape of the noise distribution, in our
experiments that vary the number of exit states, we further
average over five return indices at the 0th, 25th, 50th, 75th,
and 100th percentiles of the list length.

First, we analyze the effect large cliques of secrets have
on the performance of the cashier. As we explained in
Section 4.3, the clique size is determined by the number of
distinct browser secrets accessed by a single sandbox. While
this clique size should be small for most applications, use
cases such as 3D games and the system monitor application
we described in section 3.3 will involve accessing a large
number of these secrets at once. Figure 5a shows the com-
putation overhead of running a sandbox accessing cliques of
various sizes, with the number of exit states held constant
at five. Our results from this experiment demonstrate that

for cliques of size 13 or smaller, the computation overhead
is roughly constant at 60-70 ms each time a sandbox exits.
With cliques of size 14 and above, the computation time
for the cashier to determine if entropy had been spent on
the exponentially increasing number of subsets of the clique
begins to dominate the computation time, with the overhead
nearing 1 second at the largest clique size we measured, 20.

While our results indicate the potential for performance
issues in applications that access a large number of secrets,
it is important to observe that, under a reasonable budget,
accessing that many secrets at once in an application like
a game engine or a system monitor should never allow
the cashier to prove a tighter bound for the cost than the
sandbox’s exit state entropy, since little to no information
needs to leave the client in these use cases. This observation
and the results of our experiment suggest that these types of
applications would benefit performance-wise from an option
to tell Sandcastle to disable the cashier’s secret analysis
and base the cost solely on the exit state entropy. This
optimization will allow these applications to run with only
the constant overhead we measured for small cliques.

Next, we examine the effect of increasing the entropy of
the exit state affects the computation overhead by repeating
the previous experiment, except we fix the clique size at 2
and vary the size of the sandbox’s exit state space. Figure 5b
shows our results, which indicate only a marginal increase
in computation overhead by increasing the number of exit
states. In fact, even at the largest return space we measured,
65536 exit states, corresponding to a 16-bit leak, Sandcastle
incurs under 40 ms of computation overhead. Based on these
results, we are confident applications that perform a single
large data dump to a server will execute with minimal delay.
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Memory Allocation Chrome’s memory profiler is depre-
cated [51] and incompatible with current releases, so we
evaluate Sandcastle’s memory overhead using a standalone
build that runs independently of the browser using a test
harness, along with valgrind’s memcheck tool [52], [53].

Interestingly, the large cliques our results in Figure 5a
show can cause significant CPU overhead have minimal
effect on memory consumption, because repeating the same
clique several times does not require the cashier to store
any new information each time. In fact, the analogous worst
case for memory consumption, leaking every combination
of secrets from a set of given size, is of little concern
because it requires exponentially many sandboxes to reach.
Nonetheless, it is desirable to understand how accessing
more secrets affects a sandbox’s memory overhead. Our
results in Figure 5c indicate that each additional secret adds
roughly 1K of allocation, which will produce minimal im-
pact for applications like game engines and system monitors
that operate a single sandbox that accesses many secrets.

Increasing the entropy of the exit state has a slightly
less trivial impact on memory allocation, as we show in
Figure 5d. Our results show that a sandbox with 256 exit
states, leaking 8 bits of entropy, results in about 256K of
memory allocation, which increases to about 1.28M for a
16-bit leak. However, the linear trend indicates most of the
overhead comes from the compulsory allocation of memory
for the exit states within Sandcastle, when setting up the
sandbox, demonstrating that our optimizations to the noise
model’s rank and probability lists prevent any nontrivial
memory usage in use cases that perform a large leak.

7.2. Noise Reduction and the Entropy Budget

Considering there are roughly 4 billion (∼ 232) inter-
net users today, in order to provide reasonable anonymity,
the browser should aim for a starting entropy budget no
higher than 25-27 bits. Unfortunately, this budget must
also cover passive fingerprinting surfaces that are outside
of the browser’s control once the page loads [4]. In fact,
considering the plethora of passive fingerprinting sources
studied in previous work [7], [8], [10], we suspect a starting
budget for active fingerprints over about 20 bits would
be unsound. Chrome’s Privacy Budget proposal suggests
replacing passive fingerprinting sources with active sources
that can avoid being automatically charged for every web
page [4], but because many of these sources are fundamental
components of web protocols, we are pessimistic this effort
will see much progress in the near future.

Moreover, a lower starting budget increases Sandcastle’s
ability to reduce noise over existing budget defenses. Of
course, Sandcastle allows applications whose uses of sensi-
tive data are entirely confined to the client side, such as a
game rendering engine and the system monitor application
we suggest in section 3.3, to run without any noise at all.
On the other hand, applications like video ABR algorithms
that do need to send some data to the server also achieve
significant noise reduction over existing entropy budget
solutions.

Figure 5e shows the amount of noise Sandcastle adds
to exit states of varying sizes, assuming an previously
uncharged cashier, for four different values for the budget
available for active fingerprints. As expected, lower budgets
result in more noise, and the difference in noise from varying
the budget increases with the size of the exit state. The more
critical observation, though, is that the average slope of the
graph in Figure 5e between any two fixed exit state entropy
values e1 and e2 increases as the budget decreases. This is
important because the change in noise between e1 and e2
represents the noise reduction that Sandcastle provides for
an e1-bit exit state over naively leaking e2 bits, which is all
existing solutions allow. To our knowledge, Sandcastle is the
first budget defense to formally define a noise model, but
if we suppose an existing budget defense adopted a noise
model using Sandcastle’s noise aggregation function, the
difference between e1 and e2 represents Sandcastle’s noise
savings. Our results in Figure 5e show that this savings
for any given e1 and e2 increases as the starting budget
decreases.

Figure 5f provides an alternate visualization of the data
from Figure 5e, in the case of a 20-bit starting budget,
that more clearly illustrates the noise reduction Sandcastle
can achieve over existing budget defenses. Unsurprisingly,
the noise reduction is highest when the exit state entropy
remains low, with the 1-, 2-, and 4-bit exit states eliminat-
ing nearly 100% of the noise for sufficiently high-entropy
secrets. Meanwhile, even the 16-bit exit state can achieve
56% noise reduction for a 25-bit secret entropy. In our video
ABR example, 16 bits of exit state entropy corresponds
to about 30 seconds of video for an ABR scheme with 4
choices of bit rate that runs every 3-4 seconds, indicating a
large potential for video streaming apps, particularly short
video services like TikTok and YouTube Shorts, to achieve
significant noise savings. More generally, our noise reduc-
tion results demonstrate that Sandcastle achieves our goal
of a pay for what you leak policy, allowing developers to
eliminate most, if not all, of the noise from the data their
applications leak.

8. Limitations

Scope of Defense Sandcastle reduces the entropy cost of
invoking active fingerprinting sources when less or none
of the entropy is necessary to send in a network request,
particularly in the case when they are accessed via web
scripts. It does not attempt to mitigate the entropy cost of
passive fingerprinting sources that are fundamental com-
ponents of HTTP requests. Likewise, as we mentioned in
Section 2, Sandcastle considers extension fingerprinting out
of scope, since it does not rely on any browser APIs. Further,
browsers that employ existing blocking or budget defenses
will require web developers to modify their applications to
introduce sandboxes to obtain the client-side flexibility we
highlight in this paper, and debugging such applications will
require reasoning about the entropy the sandboxes access
and leak in order to avoid overcharging the budget.
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In addition, Sandcastle’s protection is limited to features
that are exposed by script APIs. While this is the case for
most sensitive features applications may be interested in, a
small number of CSS color, font, and display preferences
are exposed via pure CSS, enabling script-free attacks such
as text reflow and preference profiling in libraries like
NoJSFingerprint [54]. Sandcastle does protect against these
vulnerabilities for elements placed inside DOM sandboxes
and when leaking the values through JavaScript, but it
cannot prevent exploits that occur in unsandboxed CSS, such
as notifying a server of the value of a preference through a
conditional resource request. Many legitimate applications
also use these features in CSS, making them nontrivial
to update with sandboxing should the features be marked
sensitive. As a result, we would like to see Sandcastle
deployed alongside other defenses that mitigate the cost of
these information sources that cannot be sandboxed.

Size, Scope, and Lifetime of Entropy Budget Though
Sandcastle uses an entropy budget as its primary measure-
ment of privacy, it does not take responsibility for setting the
starting entropy budget. To choose a starting budget, browser
developers should consider the level of anonymity they wish
to provide and the identifiability of passive fingerprinting
sources in their browser. We provide concrete data on how
a browser’s choice of the starting budget affects Sandcastle,
particularly its noise model, in Section 7.2.

Sandcastle, like other entropy budget strategies, must
take care to ensure the budget is sufficiently scoped to
prevent fingerprinters from combining sensitive data from
multiple budgets into a fingerprint. Within a single page,
the CORS APIs [55] that enable communication between
resources from different origins necessitate a budget lifetime
at least as long as the lifetime of sessionStorage, also known
as a site navigation session or page session [56]. This can be
confusing to developers, as this allows external resources to
consume part of their parent’s budget, when such resources
are otherwise isolated from their parent.

Furthermore, origins with pages that utilize longer-term
storage features such as cookies and HTML5 storage must
contend with budgets that persist for the lifetime of that
storage, potentially spanning multiple pages. Because these
scoping issues complicate application development, future
work should explore methods for the application to explic-
itly delegate entropy to external resources and manage the
lifetime of storage features.

9. Future Work

Our contributions in this paper raise several compelling
questions about how we think about defenses against fin-
gerprinting attacks. Here, we highlight two future directions
we believe will be of particular interest to the community.

Robust Starting Budget In Section 7.2, we conjectured that
a privacy budget above 20 bits for active fingerprints would
be unsound. However, this was an estimate based on our
analysis of the passive fingerprinting surfaces known to the
academic community at this time. Designing a systematic

method to determine, perhaps formally, the identifiability
of the passive fingerprinting surfaces web browsers expose
would improve browser developers’ confidence in how to
configure Sandcastle to provide its privacy guarantees.

Another related direction worth exploring is the impact
that known limitations of k-anonymity have on the safety
of particular choices of the starting budget. Narayanan and
Shmatikov showed in 2008 [57] that k-anonymity offers
weak protection for relatively sparse datasets. In the fin-
gerprinting case, this means that an advertising network ob-
serving a small enough quantity of users could leverage nor-
mally non-identifiable fingerprints to pinpoint specific users
with high accuracy. Likewise, choosing the starting budget
based on real-world measurements of the number of users
advertising networks observe could improve the robustness
of entropy-based fingerprinting defenses like Sandcastle.

Automation An early design we considered for Sandcastle
was to modify the browser’s JavaScript runtime to perform
secret taint-tracking at a program variable level. Though
we abandoned this design on the grounds that it could not
provide any timing channel defenses, it would have had
the additional advantage of requiring no assistance from
the developer to enforce its privacy guarantees. Meanwhile,
there is potential for the sandbox mechanism to be similarly
automated without dropping our timing channel defenses.

The main challenge is that the browser must know the
space of possible exit states without the programmer spec-
ifying it ahead of time. For the timing, the browser could
fix a reasonable default execution time, which Sandcastle
already does if no return times are specified, or adopt a
more advanced strategy based on previous execution and
the level of a function’s JIT optimization. However, there
is no equivalent strategy for the return values. For those,
the most likely direction is to perform static analysis of
the code, either at the browser level or at the compiler
level with less dynamic web languages like TypeScript.
Either way, automated sandboxing would greatly improve
Sandcastle’s scalability and take a major step toward making
fingerprinting defense the default across the web.

10. Conclusion

In this paper, we described the design and implemen-
tation of Sandcastle, a browser fingerprinting defense that
provides web developers an expressive toolkit to prove to
the browser their applications access identifiable information
in a way that does not violate privacy. This ability enables
the browser to permit the use of more of the innovative
and exotic feature set the modern web ecosystem offers
while mitigating the affects of these features on privacy. We
showed, experimentally, that many applications leveraging
these features will achieve significant noise reduction over
the previous state-of-the-art.

Sandcastle’s ability to isolate sensitive information from
network access enables a brand new space of future web
APIs that were not previously safe to implement at all,
such as those that report detailed information about the
hardware.
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Appendix A.
Formal Definition of the Cashier

In Section 4.3, we gave a high-level introduction to
how we use the cashier to optimally charge secrets in
the presence of uncertainty of the behavior of sandboxes.
In this appendix, we formally define the behavior of the
cashier, discuss the limitations that arise from the cashier’s
uncertainty, and, most importantly, show that the algorithm
we use for the cashier in Sandcastle determines the optimal
safe cost for a set of secrets returned by a sandbox.

Recall we began Section 4.3 with an informal explana-
tion of the cashier uncertainty principle, which posits that
a sandbox that operates on multiple secrets cannot safely
make any assumptions about how much of the exit state’s

entropy is attributed to each secret, beyond that no secret
can leak more entropy than it originally contains. Now, we
formally express this phenomenon.

Proposition A.1 (Cashier Uncertainty Principle). Let A and
B be secrets that begin with EA and EB bits of entropy,
respectively. Let S be a sandbox that leaks LA bits worth of
A and LB bits worth of B. Consider an imperfect cashier
C that instead subtracts LA − ϵ bits from A’s remaining
entropy, and LB + ϵ bits from B’s remaining entropy when
S returns, where ϵ is a small positive number. Assuming
LB + ϵ ≤ EB , there exists another sandbox S′ that allows
an attacker to leak more combined entropy from S and S′

than C charges for them.

Proof. To determine an S′ that allows the attacker to force
C to undercharge her, first observe that C overcharged B
by ϵ bits when S returned. Now, suppose we let S′ leak all
of B, and access no other secrets. S′ will then be charged
all of the remaining uncharged bits of B, or EB− (LB + ϵ)
bits (since we assumed LB + ϵ ≤ EB , this quantity cannot
be negative; in other words, C did not subtract more than
EB bits from B’s entropy when S returns). Meanwhile, we
also know that the entropy C charged for S is (LA − ϵ) +
(LB + ϵ) = LA+LB . Thus, C will charge S and S′ a total
of (LA + LB) + (EB − (LB + ϵ)) = LA + EB − ϵ bits.
However, in reality, S leaked LA + LB bits, and since S
leaked LB bits of B, that means S′ will leak EB−LB bits.
In total, S and S′ leak (LA+LB)+(EB−LB) = LA+EB

bits. Thus, C undercharged S and S′ collectively by ϵ bits!
Thus, we found an S′ that causes C to undercharge S and
S′ in aggregate.

As we explained in Section 4.3, Sandcastle copes with
the cashier uncertainty principle by making the cashier
expressive enough to reason about uncertainty about the
secrets responsible for leaked entropy through its technique
of set saturation. Next, we formally define saturation:

Definition A.1. Let C be a cashier. A set of secrets S, whose
members have E bits of entropy in total, is saturated under
C if C has charged at least E bits to the privacy budget
for sandboxes that only operate on members of S.

In other words, a set of secrets is saturated when it
has been charged for all the entropy its members contain.
Further, recall again from Section 4.3 that saturation also
applies to sets that have not been explicitly charged by the
cashier, and it is often useful to consider these sets. Consider
the following theorem.

Proposition A.2. Let C be a cashier, and S be a set of
secrets that is saturated under C. Any future sandbox oper-
ating on only members of S can safely leak any data without
charging any additional entropy to the privacy budget.

Proof. The proof of this statement is quite simple. Suppose
the members of S have E bits of entropy in total. By the
definition of saturation, this means C has already charged
at least E bits of entropy to sandboxes that operate only on
S or any of its proper subsets. Thus, the first E bits that
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were charged from these sandboxes must not correspond to
any sandboxes that leak any information for secrets outside
of S. Since the members of S have only E bits of entropy
in total, it is impossible to undercharge any subset of S in
a future sandbox, even if it is charged no entropy, since the
entire entropy of S has already been charged.

Proposition A.2 says nothing about whether any sandbox
has actually accessed all of S at once. In Section 4.3,
we gave an example where the sets {A,B}, {A,C}, and
{B,C} were all halfway saturated, but those half-saturations
all added together to fully saturate {A,B,C}, meaning a set
like {A} could return for free from then on, even though
neither of {A,B}, {A,C} was saturated.

This observation leads to another intriguing question: if
the minimum safe cost for a set of secrets can be upper
bounded by sets that have not been explicitly charged, how
do we find them, and even if we do, how do we know
what that bound is? Let us address the second part of this
question first. Consider the following extension to our earlier
definition of saturation:

Definition A.2. Let C be a cashier and S be a set of
secrets, whose members have E bits of entropy in total.
The saturation distance of S under C is the number of bits
C must further charge sandboxes that operate only on S (or
its proper subsets) before S is saturated.

In fact, combining this definition with our earlier defi-
nition of saturation gives the saturation distance of S as

∆(C, S) = Ent(S)− Ch(C, S)

where Ent(S) is the total entropy of all secrets in S, and
Ch(C, S) is the number of bits C has charged for S and its
proper subsets. Now, we show the following more general
version of Proposition A.2:

Proposition A.3. Let C be a cashier, and S be a set of
secrets. Let T be a subset of S. It is always safe for C
to charge T a number of bits equivalent to S’s saturation
distance.

Proof. We already derived ∆(C, S) = Ent(S) − Ch(C, S),
which implies C has charged sandboxes operating only on
elements of S a total of Ent(S) − ∆(C, S) bits. So, if C
charges T ∆(C, S) bits, the total bits charged to sandboxes
operating on S or its subsets would total Ent(S). Since
we never need to charge more than Ent(S) bits for a set
of sandboxes operating only on S or its subsets, this is
sufficient.

Our goal, then, for a sandbox operating on T , is to find
the superset of T that can guarantee the lowest safe cost for
T , or, equivalently, has the smallest saturation distance. We
will touch on how to find this set soon, but first, it is useful
to state that this method actually achieves the optimal cost.

Proposition A.4. Consider a sandbox operating under a
cashier C and returning excess entropy of a set of secrets
T . Let P be the set containing T and all of its strict

supersets. The minimum safe cost C can charge for T is
minS∈P ∆(C, S).

Proof. Let S∗ be the optimal S above that has the smallest
saturation distance. Suppose by way of contradiction that
it is safe for C to charge T ∆(C, S∗) − ϵ bits, where ϵ
is a small positive number. Also observe that it must be
that ∆(C, S∗) ≤ Ent(T ), because if ∆(C, S∗) > Ent(T ),
then Ent(T ) would be a trivial safe cost for T , violating
our assumption that S∗ is the optimal element of P . Now,
since ∆(C, S∗) ≤ Ent(T ), this means that the attacker has
spent at least Ent(S∗ \ T ) bits on S∗, and in the worst
case, we have to assume the attacker used them to obtain
all of S∗ \ T . Now, since we are supposing the sandbox in
question allows her to also obtain T for ∆(C, S∗)− ϵ bits,
that means she obtains (S∗ \ T ) ∪ T = S∗ for a total of
Ch(C, S∗) + ∆(C, S∗) − ϵ = Ent(S∗) − ϵ bits. Thus, the
attacker is undercharged for S∗ by ϵ bits!

Now, it is important to notice that this does not nec-
essarily indicate a leak. Instead, one of the following two
events could have occurred:

1) There exists a subset of S∗, call it Ssub, that
guarantees a tighter bound for T .

2) There exists another set of secrets, call it S′, that
contains elements outside of S∗ and guarantees that
some of S∗ has been charged other than those that
just operate on elements of S∗.

We will now show that neither of these events can actually
happen under these conditions.

First, consider Ssub. Suppose for sake of contradiction
that we knew a tighter bound for how much of Ssub has been
leaked than what is trivially known just by using S∗. In other
words, Ch(C, Ssub) > Ch(C, S∗) − Ent(S∗ \ Ssub). Next,
notice this quantity cannot be negative because Ch(C, S∗) <
Ent(S∗ \ Ssub) would imply

Ch(C, S∗) < Ent(S∗ \ Ssub)

Ent(S∗)−∆(C, S∗) < Ent(S∗ \ Ssub)

Ent(Ssub) < ∆(C, S∗)

since Ent(Ssub) +Ent(S∗ \Ssub) = Ent(S∗). However, this
means Ent(Ssub) would again place a trivial bound on the
cost of T , violating our assumption that S∗ is optimal. Now
we know that Ch(C, S∗) − Ent(S∗ \ Ssub), observe that
Ch(C, Ssub) > Ch(C, S∗)− Ent(S∗ \ Ssub) would imply

∆(C, Ssub) = Ent(Ssub)− Ch(C, Ssub)

< Ent(Ssub)− Ch(C, S∗) + Ent(S∗ \ Ssub)

= Ent(S∗)− Ch(C, S∗)

= ∆(C, S∗)

Thus, ∆(C, Ssub) < ∆(C, S∗). Now, since Ssub must
contain all elements of T (otherwise it achieves a bound
no tighter than Ssub ∪ T , which would then be subject to
the same constraints), Ssub must also be in P . This means
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∆(C, Ssub) < ∆(C, S∗) is a contradiction to our assumption
S∗ has the smallest saturation distance in P .

Second, suppose for sake of contradiction that S′ ex-
ists. Let SC = S∗ ∪ S′. In order for SC to guarantee
some elements of S∗ have been charged, it must be that
Ch(C, S′) > Ent(S′\S∗). However, since S′\S∗ = SC\S∗,
this implies

Ch(C, S′) + Ch(C, S∗) > Ch(C, S∗) + Ent(SC \ S∗)

But since Ch(C, S′) + Ch(C, S∗) = Ch(C, SC),

Ch(C, SC) > Ch(C, S∗) + Ent(SC \ S∗)

Next, because Ent(SC) - Ent(SC \ S∗) = Ent(S∗),

Ch(C, SC)− Ent(SC) > Ch(C, S∗)− Ent(S∗)

Multiplying through by -1 gives

Ent(SC)− Ch(C, SC) < Ent(S∗)− Ch(C, S∗)

which, by definition of saturation distance, gives

∆(C, SC) < ∆(C, S∗)

Now, SC must be in P , because SC is a superset of S∗,
so it certainly must be a superset of T , since S∗ is itself
a superset of T . Thus, SC turns out to be an element of
P with a smaller saturation distance than S∗, which is a
contradiction.

Finally, since we showed that both items 1 and 2 led to
a contradiction, this implies charging T ∆(C, S∗) − ϵ bits
allows the attacker to leak bits the cashier is unaware of.

Moving ahead, we next address how to efficiently find
the set of secrets that guarantees the lowest safe cost for T .
Since checking every superset of T would be incredibly in-
efficient, we will instead formalize the relationship between
secrets as a problem of graph connectivity, enabling us to
trim the search space. Consider a universe U of all secrets
accessed by sandboxes under a single entropy budget. We
now provide the following useful definitions:

Definition A.3. Let C be a cashier and UC (the universe of
C) be the set of all secrets accessed by sandboxes that have
operated under C. The secret graph of C is the undirected
graph containing each secret in UC as a vertex, and an edge
connecting each pair of secrets (S1, S2) where at least one
sandbox operating under C has accessed both S1 and S2.

Definition A.4. Let C be a cashier, UC be the universe of
C, and G be the secret graph of C. Let T be a subset of UC .
Now, consider the set of vertices VT of G corresponding to
the secrets in T . Let VNT

be the set of vertices reachable in
G from at least one element of VT . The neighborhood of T
under C is defined as the set of secrets in UC corresponding
to the vertices in VNT

.

With this definition, and based on our discussion so far,
it is natural to suspect the following statement is true:

Proposition A.5. Let C be a cashier, UC be the universe
of C, and T be a subset of UC . Let P be the set of all

sets containing all elements of T and zero or more other
elements of UC . Let δ∗ be the minimum saturation distance
under C in P , or minPi∈P ∆(C,Pi). There exists at least
one set in P , P ∗, such that ∆(C,P ∗) = δ∗ and P ∗ contains
only elements in the neighborhood of T under C.

In other words, we should never need to look outside the
neighborhood of T to find a set of secrets that guarantees
the lowest safe cost for T . This fact turns out to be true, but
we can actually prove something even stronger!

Imagine we had a cashier who had previously charged
sandboxes for {A,B}, {B,C}, {C,D}, and {E,F}, and
we then have a fifth sandbox leak A alone. Which sets
should we consider? Proposition A.5 tells us that any sets
containing E or F are useless, since they are not in the
neighborhood of A, but sets like {A,B,D} would still be in
play. However, notice that this set breaks the chain between
D and A; in other words, D is only useful to A because it
places a lower bound on the amount the cashier has charged
C. However, because C was excluded from the set, the
cashier will not consider that relationship when calculating
the saturation distance of {A,B,D}. Thus, sets that break
connectivity like this are completely useless! We can begin
to formalize this using the following lemma:

Lemma 1. Let G be a secret graph with at least two
connected components. Let GS and GT be two such com-
ponents in G, with S and T the respective corresponding
sets of secrets. Let C be a cashier that calculates saturation
distance by considering only previous exit states containing
only secrets in G. Then ∆(C, S) ≤ ∆(C, S ∪ T ).

Proof. Since GS and GT are not connected in G, there will
be no edges between any element in GS and any element
in GT , and consequently no previous exit states C will
consider when calculating ∆(C, S ∪ T ) that will not be
considered for either ∆(C, S) or ∆(C, T ). Thus,

Ch(C, S ∪ T ) = Ch(C, S) + Ch(C, T )

Since S and T are disjoint,

Ent(S ∪ T ) = Ent(S) + Ent(T )

Subtracting the first identity from the second gives

Ent(S ∪ T )− Ch(C, S ∪ T )

= (Ent(S)−Ch(C, S)) + (Ent(T )− Ch(C, T ))

Which by the definition of saturation distance, implies

∆(C, S ∪ T ) = ∆(C, S) + ∆(C, T )

Finally, since ∆(C, T ) ≥ 0, this implies

∆(C, S) ≤ ∆(C, S ∪ T )

This lemma is useful in combination with Proposi-
tion A.4, which indicates the relationship between saturation
distance and the minimum safe cost for a set of secrets.
Using these facts in conjunction allows us to formalize the
broken chain phenomenon as the Secret Graph Theorem:
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Proposition A.6 (Secret Graph Theorem). Let C be a
cashier, UC be the universe of C, and T be a subset of UC .
Let P be the set of all sets containing all elements of T and
zero or more other elements of UC . Let δ∗ be the minimum
saturation distance under C in P , or minPi∈P ∆(C,Pi). Let
G be the secret graph of C. There exists at least one set in P ,
P ∗, such that ∆(C,P ∗) = δ∗, and the induced subgraph of
G comprised of the vertices corresponding to the elements of
P ∗ contains at least one vertex corresponding to an element
of T in each of its connected components.

Proof. Suppose this were false. Then, any and every possi-
ble P ∗ would contain some subset of its elements whose
corresponding vertices are unreachable from any of the
vertices corresponding to elements of T in the induced
subgraph of G corresponding to P ∗. (To simplify our further
language, we will refer to secrets and their corresponding
vertices in G as synonymous when discussing reachability
and connectivity).

Consider any such P ∗. Let G∗ be the corresponding
induced subgraph of G containing the elements of P ∗. Let
C∗ be the subset of P ∗ whose elements are reachable in G∗

from at least one element of T , and D∗ be the unreachable
part, equivalent to P ∗ \ C∗. Notice that both of these sets
must contain at least one element, since C∗ contains all of
T itself, and an empty D∗ would violate our assumption
that part of P ∗ is not reachable from any of T in G∗.

Now, consider any one connected component of D∗, call
it D′. Now, when C considers P ∗ as a potentially optimal
superset of T to minimize T ’s cost, C will find by Lemma
1 that

∆(C,C∗) ≤ ∆(C,C∗ ∪D′)

This fact rules out that D′ by itself is useful, but not
necessarily all of D∗ at once6. To resolve this case, consider
all connected components of D∗, {D1, D2, D3, ..., Dn}.
Imagine what would happen if C had further charged exit
states depending on {D1, D2}, {D2, D3}, ..., {Dn−1, Dn}

ϵ
n−1 bits each for some positive ϵ. This would connect all
components of D∗ in G∗. Call this new connected compo-
nent D∗∗. Since D∗∗ is now a single connected component,
Lemma 1 would apply between C∗ and D∗∗, implying

∆(C,C∗) ≤ ∆(C,C∗ ∪D∗∗)

Now, it follows from the definition of saturation distance
that C charging more exit states can never increase the
saturation distance of C∗. Specifically, this is because no
charge C makes can ever decrease the total amount charged
to C or any of its subsets. Thus, ∆(C,C∗) is monotonically
decreasing as the number of charges C makes increases
over time. Combining this fact with the observation that the
phantom exit states used to create D∗∗ could only decrease
C∗ ∪D∗’s saturation distance, this means

∆(C,C∗) ≤ ∆(C,C∗ ∪D∗)

6. We do not need to consider subsets of D∗ other than D′ because such
a subset would act as D∗ in a different secret set checked by C (assuming
it performed its search using the rule posed by Proposition A.5), meaning
this entire argument applies to that set as well.

However, this would make C∗ another possible P ∗, but since
every element of C∗ is connected in G∗ to an element of
T , this contradicts our assumption that every possible P ∗

contains a component unreachable in G∗ from any element
of T .

Thus, we have shown that a cashier C wanting to bound
the cost for an exit state depending on a set of secrets S
needs only to consider supersets Ssup of S such that the
induced subgraph of C’s secret graph corresponding to Ssup

has every vertex reachable from at least one vertex corre-
sponding to an element of S. Combining Propositions A.4
and A.6 tells us that this strategy will find the optimal safe
cost for S. Using these principles, we formally define the
cashier algorithm in Algorithm 1.

Algorithm 1 Determine cost for secret set S

G← Secret graph of C
N ← Vertices in G reachable from S, excluding S itself.
OPT←∞
for C ∈ combinations(N ) do

G′ ←Induced subgraph of G containing S and C
valid ← True
for v ∈ vertices(G′) do ▷ Reachability requirement

for s ∈ S do
if v reachable from s in G′ then

r ← True
end if

end for
if not r then

valid← False
end if

end for
if valid then

U ← 0 ▷ Entropy spent under G′

for T ∈ subsets(vertices(G′)) do
U ← U+ total C has charged to exactly T

end for
if U > OPT then

OPT ← U
end if

end if
end for

return OPT

Our optimizations reduce the time complexity of the
cashier from exponential in the number of secrets the cashier
has seen to exponential in the size of the largest clique in the
secret graph. However, this is still not a polynomial time al-
gorithm due to the exponential number of supersets to check.
However, we believe this is tolerable because the number of
secrets actually accessed by a practical website should be
relatively small, and even an adversarial developer aiming to
make the cashier run slowly would only be hurting their own
performance. Also, the cashier can approximate the solution
in these degenerate cases by short-circuiting after checking
a certain number of supersets, which is guaranteed to uphold
soundness by only possibly overestimating the optimal cost.
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